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ABSTRACT  

Volume of distribution (VD) is a key pharmacokinetic property that together with clearance determines 

the half-life or residence time of drug in the body. It is commonly expressed as steady state volume of 

distribution VDss with a physiological basis for its understanding developed by Øie and Tozer (1979). 

The Øie-Tozer equation uses terms for plasma protein binding (fup), tissue binding (fut), the 

extravascular-to-intravascular ratio of albumin as well as constants for the volumes of plasma, 

extracellular fluid and tissue. We explored this model using a dataset of 553 drugs for which VDss and 

plasma protein binding were available in human. Eighteen percent of cases (102 compounds) did not 

obey the Øie-Tozer model, with the rearranged equation giving an aberrant fut (fut < 0 or fut > 1), in 

particular for compounds with VDss < 0.6 L.kg-1 and fup > 0.1. Further analysis of this group of 

compounds revealed patterns in physicochemical attributes with a high proportion exemplified by logP 

less than zero (i.e. very hydrophilic), polar surface area > 150 Å2, and a difference between logP and  

logD > 2.5. In addition there was a high representation of certain drug classes including anti-infectives 

as well as neuromuscular blockers and contrast agents. The majority of compounds were also found to 

have literature evidence implicating active transport processes in their disposition. This analysis 

provides some important insights for pharmacokinetic optimization in this particular chemical space, as 

well as in the application of the Øie-Tozer model for predicting volume of distribution in human.  
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INTRODUCTION 

 

Volume of distribution is a key pharmacokinetic parameter relating the systemic concentration of 

drug to the amount in the body. It is generally considered a theoretical rather than physical term, which 

can be expressed in various forms including VD central, VD at steady-state and VD terminal (Gibaldi 

et al., 1969). VD central (VDc) represents the initial dilution volume of the drug, calculated as dose 

divided by the initial plasma concentration (C0 extrapolated) following an intravenous dose, and is 

usually small as equilibration into tissues has yet to occur. VD terminal (VDz or VDβ) is calculated as 

clearance divided by the terminal phase rate constant and represents the stage when distribution is 

complete with redistribution from tissues to plasma being predominant. As such it is heavily dependent 

on the terminal phase rate constant and characterization of this phase can prove problematic as the 

limits of bioanalytical quantification are reached. VD steady-state (VDss) can be thought of as a ‘time-

averaged’ volume lying somewhere between VDc and VDz, and when tissue concentrations have 

reached a maximum. This VD parameter is calculated as the product of dose and area under the first 

moment curve divided by the square of the area under the curve and is generally considered most useful 

in assessing potential dosing regimens and expected accumulation in multiple dosing scenarios.  

The determinants of volume of distribution tend to include tissue affinity driven by lipophilic and 

electrostatic interactions with membrane phospholipids as well as pH partition mechanisms into 

organelles such as lysosomes (Smith, 1997; Van de Waterbeemd et al., 2001; Lombardo et al., 2002; 

Lombardo et al., 2004; Obach et al., 2008). Plasma protein binding is also important, and it is generally 

driven by lipophilicity, plus anionic characteristics due to an electrostatic interaction with a basic 

residue in the most abundant plasma protein, albumin. Another contributing factor which has received 

much attention recently is the role of active transport processes in the volume of distribution (Grover 

and Benet, 2009; Shugarts and Benet, 2009). By analyzing literature data on pharmacokinetic 

interactions at the transporter level, Grover and Benet (2009) were able to show that the greatest impact 
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of transporters on VD was once distribution equilibrium had occurred i.e. VDss and VDz. In addition, 

uptake and efflux interactions at the liver generally decreased VD whilst efflux interactions at the 

kidney generally increased VD.  

Transport of a xenobiotic against its concentration gradient, utilizing ATP hydrolysis or facilitated by 

an opposing endogenous concentration gradient, is an important process in drug disposition. The 

proteins responsible are expressed in many tissues including but not limited to intestine, liver, kidney 

and brain. This has become, over the years, an area of major focus and a multitude of active 

transporters implicated in drug transport have been identified, cloned and recombinantly expressed (Xia 

et al., 2008). They typically fall into 2 categories: uptake (from luminal/vascular to tissue) e.g. organic 

anion transporting polypeptide (OATP); and efflux (from tissue to luminal/vascular) e.g. multidrug 

resistance protein 1 (MDR1) or P-glycoprotein. The most well-known and widely studied transporter is 

P-gp (MDR1) identified as playing a key role in limiting oral absorption and CNS penetration as well 

as mediating biliary excretion of substrates, all as a result of high expression at the gut wall, blood brain 

barrier and hepatocyte sinusoidal/bile canaliculi membranes respectively.  

In 1979, Øie and Tozer (Oie and Tozer, 1979) proposed the model for volume of distribution at 

steady state described by plasma and tissue drug binding, building on the work of Gillette (Gillette, 

1976) by including a term for the extravascular-intravascular ratio of non-specific drug binding sites or 

amount of binding protein. The primary model assumption is that steady-state is reached via purely 

passive diffusion phenomena and does not account for active transport of drug against concentration 

gradients.   

More recently, this model was shown to be useful in predicting human VDss, from animal data, by 

rearrangement of the equation to describe tissue free fraction. Tissue binding is generally considered to 

be consistent across species as this is typically driven by hydrophobic and electrostatic interactions with 

common cellular constituents such as membrane phospholipids. By using VDss and plasma free fraction 

in preclinical species to generate a ‘species-independent’ tissue free fraction, this figure could be used 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on April 7, 2010 as DOI: 10.1124/dmd.110.032458

 at A
SPE

T
 Journals on A

pril 18, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


 

DMD #32458 

 

 6

together with human plasma free fraction in the original form of the model to calculate human VDss 

(Lombardo et al., 2002; Lombardo et al., 2004).  The aim of the present work was to explore the Øie-

Tozer model further using a dataset of VDss and plasma protein binding values in human on 553 

compounds. A reasonable proportion of the dataset (18%) did not obey the model giving rise to 

aberrant fut values either less than zero or greater than 1. The sensitivity of the model to the exact value 

of extravascular-intravascular binding protein ratio was also demonstrated. Moreover, on closer 

analysis, the violating compounds revealed trends in physicochemical properties and therapeutic class, 

with the majority of them having literature data supporting their action as substrates of various active 

transporters. Finally, we show that for these types of compounds, the application of the Øie-Tozer 

equation could lead to erroneous predictions if aberrant fut values are not observed in animals, and then 

used for human VDss prediction.  
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METHODS 

 

This analysis utilized a database of human intravenous pharmacokinetic parameters recently 

published (Obach et al., 2008). Within this 670 compound dataset, there were 553 compounds for 

which human plasma protein binding data were available. Data on these 553 compounds formed the 

basis for this work.  

The physiological model for volume of distribution at steady state (VDss) as defined by Øie and Tozer 

(1979) is as follows:  

 

ut

upR
IEPEPupIEPss f

fV
RVVVfRVVD +−++= )/()1( //  

where fup is the fraction unbound in plasma, fut is the fraction unbound in tissues, RE/I is the 

extravascular:intravascular ratio of binding proteins (usually 1.4 for albumin). VP, VE and VR refer to 

the volumes of plasma, extracellular fluid and remainder fluid with values of 0.0436, 0.151 and 0.38 

L.kg-1 respectively in human. This equation was rearranged to express fut in terms of VDss and fup as 

follows:  

 

[ ] [ ]PIEupEupPss

upR
ut V)Rf()V(fVVD

fV
f

/1−−−−
=  

 

The sensitivity of the RE/I index on generating an aberrant fut value for 102 compounds was assessed 

by varying this parameter from 0.1 to 2.5 in 0.1 unit increments with all volume terms (VP, VE, VR) 

held constant.  
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Physicochemical descriptors were calculated using Volsurf+ (version 1.0, Molecular Discovery Ltd., 

UK) and included lipophilicity parameters (logP, logD7.4) as well as polar surface area (PSA) and 

molecular weight. Literature searches for compound related information pertaining to substrates of 

active transport processes were undertaken using SciFinder 2007.  
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RESULTS 

 

The rearranged Øie-Tozer equation expressing fut in terms of VDss and fup gave aberrant results for 

102 of 553 compounds, where fut was less than zero or greater than 1. The 102 outlier compounds all 

had VDss of less than 0.6 L.kg-1, and as illustrated in Figure 1, fall into 2 classes with respect to their 

plasma protein binding; 12 compounds were highly plasma protein bound with fup < 0.1 and VDss less 

than 0.2 L.kg-1, whilst the remaining 90 compounds had fup > 0.1 with a large proportion showing no 

binding to plasma proteins (fup = 1).  

Based on this finding, simulations were performed across a range of VDss and fup values as shown in 

Figure 2. From this analysis it is clear that for high VDss (1 and 3 L.kg-1) there are no model violation 

occurrences across the range of fup. However, in the two low VDss situations (0.3 and 0.5 L.kg-1) there 

are 2 separate threshold values of fup which lead to aberrant fut values (fup > 0.3 and > 0.85 respectively). 

In the case of very low VDss (0.1 L.kg-1), generally accepted as the distributional volume of albumin, 

the model fails across the entire range of fup.  

In light of the number of model violations (102 out of 553) the sensitivity of the extravascular-to-

intravascular ratio of drug binding protein (RE/I) parameter was explored. Typically this is set at 1.4 

based on the distribution of albumin. For the 102 outlier compounds, simulations were performed 

varying RE/I from 0.1 (very low extravascular distribution of plasma proteins) to 2.5 (extremely high 

extravascular distribution of plasma proteins) with 2 separate classes based on extent of plasma protein 

binding (Figure 3). Incremental increases in RE/I from 1.4 to 2.5 had no impact for either group on the 

proportion of compounds generating fut values between 0 and 1. However, a change was observed when 

RE/I was lowered, with low fup (< 0.1) compounds showing a much higher sensitivity to changes in this 

parameter. For example, if RE/I is lowered to unity, a substantial number of highly bound compounds 

(40%) generate fut values that fall within the acceptable range whilst there is a negligible change for the 

low binding compounds.  
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The physicochemical properties of the 90 outlier compounds, where VDss is less than 0.6 L.kg-1 and 

fup is greater than 0.1, were investigated and are summarized in Figure 4. Trends were observed with 

lipophilicity expressed as clogP, polar surface area (PSA), molecular weight and extent of ionization 

(expressed as the difference between clogP and clogD) relative to the whole dataset of 553 compounds. 

From these plots it is clear the majority of the aberrant compounds have very low lipophilicity with 

clogP typically less than zero; 46% of the compounds with clogP less than zero give rise to an aberrant 

fut. High polarity is also an important contributing factor with 50% of the compounds with PSA > 150 

Å2 also leading to Øie-Tozer model violations. In addition, there is a trend with the degree of ionization 

where 34% of highly ionized compounds (defined as a difference between logP and logD greater than 

2.5 log units) produce aberrant fut values. The trend with MW is less clear although there are a greater 

proportion of outlier compounds with high MW in excess of 400.  

Possible explanations for the behavior of the 90 outlier compounds with low VDss and high fup were 

investigated further. Table 1 shows a considerable number of these compounds have been shown to be 

substrates for various human active transport proteins.  

Furthermore, in order to determine the predictive accuracy of the approach on the 102 violating 

compounds, calculations of human VDss were made using measured fup and 3 hypothetical fut values 

within the normal range (0.1, 0.5 and 0.9), as might normally be obtained from the rearranged Øie-

Tozer equation with preclinical data. The summary statistics are displayed in Table 2.  
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DISCUSSION 

 

The analysis presented has demonstrated a number of outlying scenarios for the Øie-Tozer model 

when VDss is low (< 0.6 L.kg-1). Twelve of the compounds giving rise to aberrant fut values have fup < 

0.1, likely due to variation at the upper end of the plasma protein binding range, where accurate 

experimental determination of very low free fractions can become analytically challenging. In addition, 

the model is not applicable for compounds with VDss of 0.1 L.kg-1 or lower: as fup tends to zero, VDss 

approximates to 0.105 L.kg-1. There is some sensitivity to the exact value of RE/I used for highly plasma 

bound compounds as might be expected; altering the extravascular-to-intravascular distributional ratio 

of binding protein has a more significant impact on the fut as the distribution of these compounds is 

primarily driven by affinity for plasma proteins such as  albumin. In cases of high plasma protein 

binding, an RE/I value of 1.4 may not be appropriate and so the model should be applied with caution. 

Alternatively, information on the particular plasma proteins involved in drug binding may allow the RE/I 

to be tailored to compound-specific predictive application.  

The remaining 90 compounds were explored further with respect to physicochemical attributes and 

possible pharmacokinetic explanations for the model violations. The Øie-Tozer model has a number of 

assumptions which can aid understanding in cases where aberrant fut values are obtained. The 

assumptions are: (1) drug distribution is driven by non-specific binding between blood and tissue, (2) 

rapid equilibration occurs between blood and tissue, (3) drug distributes uniformly within each organ or 

tissue, (4) there is no contribution from active transport processes, and (5) distributional processes are 

non-saturating. In this regard, we have shown a substantial number of the 90 violating compounds have 

literature evidence supporting their action as substrates of human active transport proteins (Table 1). 

The transporters cited are typically of an efflux nature, limiting distribution into those tissues 

expressing the transport protein and consequently contributing toward limiting VDss to the volume of 
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extracellular fluid (0.6 L.kg-1) or lower. This is not to say that all active transport substrates violate the 

Øie-Tozer model e.g. the HIV protease inhibitors and angiotensin receptor antagonists are known to be 

actively transported and obey the Øie-Tozer model. In addition, it is not the case that low VDss is the 

sole driver for failures of the equation. Of the 216 compounds with VDss < 0.6 L.kg-1, 114 obey the 

model whilst 102 compounds do not. Furthermore, it is not possible to substantiate the involvement of 

active transport as the exclusive determinant for whether or not model violations will be observed. 

There are obviously many other considerations including affinity for the transport protein, the 

magnitude of local, unbound concentrations, and dose size. These complicating factors make it difficult 

to assess the sensitivity of the model in this respect. For example, some compounds may give rise to 

back-calculated fut values that are realistic (i.e. between 0 and 1) but which remain inaccurate due to 

one or more model assumptions e.g. many of the statins (OATP1B1 substrates) are low VDss, high fup 

compounds which in principle obey the model. Nevertheless, in cases of low VDss and high plasma free 

fraction, this analysis implicates the involvement of active transporters limiting tissue partitioning.  

It has been observed that tissue-to-plasma partition ratios are elevated in certain tissues in mdr1a 

knockout mice relative to wildtype, albeit not for every compound studied and in all tissues (Lee et al., 

2009). An analysis of published reports evidencing changes in distribution volume, in animals and 

human, mediated by drug-drug interactions, genetic polymorphism or gene knockout, showed some 

similar trends; uptake interactions at the liver tended to cause a decrease in VDss. However, the efflux 

interactions at the liver did not trend in the opposing direction which could be a consequence of 

assessing interactions in a tissue generally considered part of the central compartment (Grover and 

Benet, 2009). This work highlights the potential complexity of drug distribution; a paradigm shift from 

simple passive diffusion phenomena to more intricate, active mechanisms including efflux, uptake and 

intracellular sequestration. In addition, Dobson et al. (Dobson and Kell, 2008) concluded that active 

transport processes are fundamental in determining drug disposition being likely more common than 
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usually assumed, citing the mounting evidence in the literature on specific drug examples as well as 

observations that drugs can concentrate in specific tissues.  

It is clear that a large proportion of the 90 compounds are beta-lactam antibiotics. Interestingly, this 

class of compounds was intentionally excluded from the Rule-of-5 analysis since these natural products 

(and close derivatives) are highly likely to have ‘evolved’ transport protein interactions (Lipinski et al., 

1997; Ganesan, 2008). In addition, there are examples in the literature of this class of compounds 

accumulating in specific tissues by various mechanisms, a further model assumption violation. The 

beta-lactam antibiotics have been shown to accumulate in the choroid plexus of rat via an active 

carrier-mediated transport process (Nohjoh et al., 1989). The aminoglycosides listed in Table 1, 

including amikacin, gentamicin, isepamicin, kanamycin, netilmicin and tobramycin, have been shown 

to selectively accumulate in renal cortex leading to renal injury. This selective accumulation is thought 

to be mediated by megalin, a large endocytic receptor abundantly expressed in renal proximal tubules  

(Tod et al., 2000; Nagai, 2006). Furthermore, a similar mechanism by which these compounds 

accumulate in sensory hair cells leading to ototoxicity has also been identified (Hashino et al., 1997). 

Following receptor-mediated endocytosis, the compounds are transported by vesicular trafficking into 

lysosomes. Accumulation of drug leads to lysosomal disruption and rupture, with subsequent hair cell 

degeneration. Compare this active mechanism of lysosomal and mitochondrial trapping to that 

generally regarded for basic drugs where a passive, pH partition mechanism is implicated (Okumura et 

al., 1989; Daniel and Wojcikowski, 1997). Contrast agents are also well represented including a 

number of iodinated compounds such as iohexol as well as the gadolinium-containing compound, 

gadoversetamide. These agents are typically limited to the intravascular and extracellular fluid spaces 

and are renally cleared by glomerular filtration, in line with their intended clinical imaging applications. 

However, cytochemistry studies with the diagnostic indicator dye, fluorescein, have demonstrated 

active transport-driven renal accumulation in mitochondria (Masereeuw et al., 1994).  
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As well as model assumptions concerning no active transport processes and uniform tissue 

distribution there is also a requirement that distributional characteristics are non-saturating. This could 

explain cases such as cefazolin where plasma protein binding has been shown to be non-linear in rat 

(Tsuji et al., 1983). The free fraction in rat serum at 10, 100 and 200 μg.mL-1 was measured as 11, 20 

and 41 % respectively. This marked change in plasma protein binding would likely shift the 

distributional behavior in tissues.  

The Øie-Tozer model has been effectively applied to the prediction of human VDss for basic and 

neutral compounds (Obach et al., 1997; Lombardo et al., 2002; Lombardo et al., 2004). In this 

approach the rearranged Øie-Tozer equation is used together with VDss and fup in preclinical species in 

order to calculate fut. This value is considered species-independent since tissue binding tends to be 

determined by the extent of interaction with phospholipid membranes. This fut together with 

experimental human fup measurements can be put into the standard form of the Øie-Tozer model to 

generate VDss for human (Obach et al., 1997). In order to determine the predictive accuracy of the 

approach on the 102 violating compounds, calculations of VDss were made using measured fup and 3 

hypothetical fut values within the normal range (0.1, 0.5 and 0.9), as might normally be obtained from 

the rearranged Øie-Tozer equation with preclinical data. From the summary statistics displayed in Table 

2, it is clear that when apparently normal fut values from preclinical species are used, large errors in 

prediction can be observed; assuming passive diffusion-mediated distribution leads, in the vast majority 

of cases, to over-prediction of human VDss. Even when the more likely scenario of low tissue binding is 

applied (fut 0.9), the percentage of predictions with less than 2-fold error is lower than 60%, with a 

maximum error of 9-fold in this test set. The errors observed could be further exacerbated by the high 

proportion of actively transported drugs within the 102 compound set, especially given the known 

species differences in transporter expression and activity.  
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Multiple linear regression approaches have also been applied to the calculation of fut using 2 

experimentally determined physicochemical properties, ElogD and fraction ionized at pH 7.4 

(Lombardo et al., 2002; Lombardo et al., 2004). With the exception of the borderline example, 

metronidazole, where a slightly different plasma free fraction was reported, there are no violating 

compounds present in these original reports. However, in recent work where the ElogD approach was 

modified to an HPLC-IAM measurement, a number of acidic compounds were utilized and, despite 

some of them giving rise to aberrant fut values (log fut > 0), they were included in the subsequent model 

building (Sui et al., 2009). The present investigation highlights the importance of careful application of 

the Øie-Tozer model and the need to be aware of the potential for aberrant fut values. In the same 

manner, and as shown in this work, the generation of an aberrant fut parameter from preclinical data, 

although not an all-encompassing diagnostic, can give some useful insights into potential disposition 

properties of novel chemical entities, implicating active transport, selective tissue accumulation or non-

linear, non-uniform distributional behavior. The judicious application of the Øie-Tozer model to 

predictions of human VDss for novel compounds is also noteworthy, in cases where the 

physicochemical property profile or drug class overlaps with that demonstrated in this analysis. Further 

work in the field of drug transporters will help elucidate the nature of drug distributional behavior and 

provide further insights to aid drug design.  
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FIGURE LEGENDS 

 

Figure 1. Plot of volume of distribution at steady state against log plasma free fraction for the 102 

compounds which gave rise to an aberrant tissue free fraction using the rearranged Øie-Tozer equation. 

Plasma free fraction less than 0.1 (open circles) and greater than 0.1 (closed circles).  

 

Figure 2. Simulations of the Øie-Tozer model for hypothetical compounds with VDss of 0.1, 0.3, 0.5, 

1 and 3 L.kg-1 with varying fup, illustrating model violations and the scenarios where fut becomes 

aberrant (grey shading).    

 

Figure 3. Sensitivity analysis of the plasma protein extravascular-to-intravascular ratio (RE/I) for 

compounds with high (fup > 0.1, closed symbols) and low (fup < 0.1, open symbols) plasma free fraction. 

All compound dependent variables and physiological terms remained constant whilst RE/I was varied 

from 0.1 to 2.5.  

 

Figure 4. Trends in physicochemical properties observed between compounds with fut within normal 

range (0< fut <1; black) and compounds with aberrant fut (closed circle data-points in Figure 1. i.e. 0 > 

fut or fut >1; hashed). A, clogP; B, polar surface area (in Å2);  C, molecular weight; D, extent of 

ionization described by the difference between clogP and clogD at pH 7.  Numbers above each bar 

represent % of compounds with aberrant fut within each range.  
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Table 1. Compounds which do not obey the Øie-Tozer model together with designated therapeutic 

activity and literature evidence for interaction with active transporters.  

Drug Therapeutic Class Transporter/s or 

active mechanism 

implicated 1 

Reference 

Acetylsalicylic acid NSAID OAT1 (Apiwattanakul et al., 

1999) 

Adefovir anti-viral MRP4, OAT1, OAT3, 

Secretory renal CL 

(Imaoka et al., 2007; 

Uwai et al., 2007; 

Varma et al., 2009) 

Amikacin anti-bacterial Megalin (Tod et al., 2000; 

Nagai, 2006) 

Aminohexanoic acid, 6- hematologic agent   

Amoxicillin anti-bacterial PEPT1, PEPT2, OAT1, 

secretory renal CL 

(Hill et al., 2002; Li et 

al., 2006; Varma et al., 

2009) 

Ampicillin anti-bacterial MRP4, NPT1 (mouse), 

PEPT1 

(Yabuuchi et al., 1998; 

Uchida et al., 2007; 

Dobson and Kell, 2008) 

Atracurium neuromuscular blocker   

Azlocillin anti-bacterial Secretory renal CL (Varma et al., 2009) 

Aztreonam anti-bacterial Secretory renal CL (Varma et al., 2009) 
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Biapenem anti-infective   

Busulphan immunosuppressant/anti

-neoplastic 

  

Carbenicillin anti-bacterial Secretory renal CL (Varma et al., 2009) 

Carboplatin anti-neoplastic ATP7A, ATP7B (Safaei, 2006) 

Carumonam anti-bacterial   

Cefadroxil anti-bacterial PEPT1, OAT1, OAT3, 

OAT4, secretory renal 

CL 

(Bretschneider et al., 

1999; Takeda et al., 

2002; Varma et al., 

2009) 

Cefamandole anti-bacterial OATs, secretory renal 

CL 

(Rizwan and 

Burckhardt, 2007; 

Varma et al., 2009) 

Cefatrizine anti-bacterial Secretory renal CL (Varma et al., 2009) 

Cefazolin anti-bacterial OAT1, OAT3, OAT4, 

MRP4, secretory renal 

CL 

(Takeda et al., 2002; Ci 

et al., 2007; Varma et 

al., 2009) 

Cefepime anti-bacterial OCTN2 (Ganapathy et al., 

2000) 

Cefetamet anti-bacterial   

Cefixime anti-bacterial PEPT1, PEPT2, NPT1 (Ganapathy et al., 
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(mouse) 1997; Yabuuchi et al., 

1998) 

Cefmetazole anti-bacterial MRP4 (Uchida et al., 2007) 

Cefodizime anti-bacterial Unidentified 

transporter in isolated 

rat choroid plexus 

(Nohjoh et al., 1989) 

Ceforanide anti-bacterial   

Cefotaxime anti-bacterial OAT1, OAT3, OAT4, 

secretory renal CL 

(Takeda et al., 2002; 

Varma et al., 2009) 

Cefotetan anti-bacterial   

Cefoxitin anti-bacterial   

Cefpirome anti-bacterial   

Cefprozil anti-bacterial   

Ceftazidime anti-bacterial MRP4 (Uchida et al., 2007) 

Ceftizoxime anti-bacterial MRP4, NPT1 (mouse) (Yabuuchi et al., 1998; 

Ci et al., 2007) 

Ceftobiprole anti-bacterial   

Cefuroxime anti-bacterial Secretory renal CL (Varma et al., 2009) 

Cephalexin anti-bacterial MATE1, secretory 

renal CL 

(Varma et al., 2009) 

Tanahara et al., 2007; 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on April 7, 2010 as DOI: 10.1124/dmd.110.032458

 at A
SPE

T
 Journals on A

pril 18, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


 

DMD #32458 

 

 28

Cephaloridine anti-bacterial OAT1, OAT3, OAT4, 

OCTN2, NPT1 (mouse) 

(Yabuuchi et al., 1998; 

Ganapathy et al., 2000; 

Takeda et al., 2002) 

Cephalothin anti-bacterial OAT1, OAT3, OAT4, 

NPT1 (mouse) 

(Yabuuchi et al., 1998; 

Takeda et al., 2002) 

Cephapirin anti-bacterial   

Cephradine anti-bacterial MATE1, OAT1, NPT1 

(mouse) 

(Yabuuchi et al., 1998; 

Rizwan and 

Burckhardt, 2007; 

Tanihara et al., 2007) 

Cidofovir anti-viral MRP4, OAT1, OAT3, 

secretory renal CL 

(Imaoka et al., 2007; 

Uwai et al., 2007; 

Varma et al., 2009) 

Cilastatin protease inhibitor OAT3 (Takeda et al., 2001) 

Cisatracurium neuromuscular blocker   

Clavulanic Acid anti-bacterial   

Dalfopristin anti-bacterial   

Dexrazoxane immunosuppressant/anti

-neoplastic 

  

Diatrizoic acid 

(Amidotrizoate) 

contrast agent   
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Doxacurium neuromuscular blocker   

Doxifluridine immunosuppressant/anti

-neoplastic 

CNT1, secretory renal 

CL 

(Larrayoz et al., 2004; 

Varma et al., 2009) 

Enalaprilat anti-hypertensive MRP2, secretory renal 

CL 

(Liu et al., 2006; 

Varma et al., 2009) 

Eptifibatide hematologic agent   

Ertapenem anti-bacterial   

Fluorescein contrast agent OAT3, MRP2, active 

transport-driven 

accumulation in 

mitochondria 

(Masereeuw et al., 

1994; Hawkins et al., 

2007) 

Fluorouracil, 5- immunosuppressant/anti

-neoplastic 

AQP9, OAT2 (Tsukaguchi et al., 

1998; Rizwan and 

Burckhardt, 2007) 

Foscarnet anti-viral MCT1 (rat), NPT1 

(mouse) 

(Yabuuchi et al., 1998; 

Tamai et al., 1999; 

Kido et al., 2000) 

Fosfomycin anti-bacterial   

Gadoversetamide contrast agent   

Gentamicin anti-bacterial Megalin (Tod et al., 2000; 

Nagai, 2006) 
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Hydroxyurea anti-neoplastic OATP2, MDR1 (Dogruel et al., 2003) 

Imipenem anti-bacterial   

Iohexol contrast agent   

Iopamidol contrast agent   

Iopromide contrast agent   

Iothalamic acid 

(Iothalamate) 

contrast agent   

Isepamicin anti-bacterial Megalin 

 

(Tod et al., 2000; 

Nagai, 2006) 

Kanamycin anti-bacterial Megalin (Tod et al., 2000; 

Nagai, 2006) 

Lamifiban hematologic agent   

Melagatran hematologic agent   

Meropenem anti-bacterial OAT1, OAT3, 

secretory renal CL 

(Shibayama et al., 

2007; Varma et al., 

2009) 

Metocurine neuromuscular blocker   

Metrizoate contrast agent Secretory renal CL (Varma et al., 2009) 

Metronidazole anti-protozoal/anti-

bacterial 
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Mezlocillin anti-bacterial Secretory renal CL (Varma et al., 2009) 

Miglitol hypoglycemic agent   

Mivacurium (cis/cis) neuromuscular blocker   

Moxalactam anti-bacterial   

Netilmicin anti-bacterial Megalin (Tod et al., 2000; 

Nagai, 2006) 

Oseltamivir acid anti-viral Secretory renal CL, 

MDR1, PEPT1 

(Morimoto et al., 2008; 

Ogihara et al., 2009; 

Varma et al., 2009) 

Penicillin G anti-bacterial MRP4, OATPs, 

PEPT1, PEPT2, NPT1, 

OAT1, OAT3, 

secretory renal CL 

(Uchino et al., 2000; 

Varma et al., 2009) 

 

Piperacillin anti-bacterial MRP4, secretory renal 

CL 

(Uchida et al., 2007; 

Varma et al., 2009) 

Pipecuronium neuromuscular blocker   

Probenecid uricosuric agent/anti-

bacterial adjunct 

OAT1, MCT6 (Murakami et al., 2005; 

Rizwan and 

Burckhardt, 2007) 

Quinaprilat anti-hypertensive OAT3, secretory renal 

CL 

(Varma et al., 2009; 

Yuan et al., 2009) 

Rocuronium neuromuscular blocker OATP1A2 (Dobson and Kell, 
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2008) 

Streptomycin anti-bacterial   

Sulbactam anti-bacterial MRP4, secretory renal 

CL 

(Uchida et al., 2007; 

Varma et al., 2009) 

 

Sulbenicillin anti-bacterial Secretory renal CL (Varma et al., 2009) 

Sulfadiazine anti-protozoal/anti-

bacterial 

Active uptake in 

leukocytes 

(Climax et al., 1986) 

Ticarcillin anti-bacterial Secretory renal CL (Varma et al., 2009) 

Tobramycin anti-bacterial MDR1, megalin (Banerjee et al., 2000; 

Tod et al., 2000; Nagai, 

2006) 

Tomopenem anti-bacterial   

Zanamivir anti-viral   

1 Compounds classified as exhibiting net secretory renal CL based on threshold defined by Varma et 

al. (2009) where CLr > 1.2•fup•GFR.  
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Table 2. Summary statistics on the performance of the Øie-Tozer model on the 102 outlier 

compounds applying various hypothetical estimates of fut (0.1, 0.5 and 0.9) as may usually be obtained 

from preclinical species.  

Statistic fut 0.1 fut 0.5 fut 0.9 

GMFE 9.7 2.7 1.9 

% within 2-fold 3 46 57 

Maximum fold error 55 13 9 

% > 2-fold over-predicted 97 50 43 

% > 2-fold under-predicted 0 4 0 
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