Aldehyde dehydrogenase 1B1 (ALDH1B1): Molecular cloning and characterization of a novel mitochondrial acetaldehyde metabolizing enzyme

Dimitrios Stagos †, Ying Chen †, Chad Brocker, Elizabeth Donald, Brian C. Jackson, David J. Orlicky, David C. Thompson, and Vasilis Vasiiliou

Department of Pharmaceutical Sciences (D.S., Y.C., C.B., E.D., B.J., V.V.), Department of Pathology (D.O.), and Department of Clinical Pharmacy (D.T.), University of Colorado
Denver, Aurora, CO 80045
Running title: Initial characterization of human ALDH1B1

Corresponding author:
Vasilis Vasiliou, PhD
Department of Pharmaceutical Sciences
University of Colorado Denver, Aurora, CO 80045, USA
Phone: (303) 724-3520; fax: (303) 724-2666
e-mail: vasilis.vasiliou@ucdenver.edu.

Number of text pages: 24 (including references)
Number of tables: 1
Number of figures: 5
Number of references: 40
Word count: Abstract: 243
Introduction: 701 (excluding citations)
Discussion: 1271

Abbreviations:
ADH, alcohol dehydrogenase; ALDH, aldehyde dehydrogenases; RA, retinoic acid; 4-HNE, 4-Hydroxynonenal; MDA, Malondiadehyde; ORF, open reading frame; FPLC, fast protein liquid chromatography; Q-PCR, quantitative real-time PCR; IHC, immunohistochemistry; IHF, immunoflurescence; DAPI, 4,6-diamidino-2-phenylindole; MOI, multiplicity of infection; p-NPA, p-nitrophenyl acetate; GTN, glyceryl trinitrate;
ABSTRACT

Ethanol-induced damage is largely attributed to its toxic metabolite, acetaldehyde. Clearance of acetaldehyde is achieved by its oxidation, primarily catalyzed by the mitochondrial class II aldehyde dehydrogenase (ALDH2). ALDH1B1 is another mitochondrial ALDH that shares 75% peptide sequence homology with ALDH2. Recent population studies in Caucasians suggest a role for ALDH1B1 in ethanol metabolism. However, to date, no formal documentation of the biochemical properties of ALDH1B1 has been forthcoming. In this current study, we cloned and expressed human recombinant ALDH1B1 in Sf9 insect cells. The resultant enzyme was purified by affinity chromatography to homogeneity. The kinetic properties of purified human ALDH1B1 were assessed using a wide range of aldehyde substrates. Human ALDH1B1 had an exclusive preference for NAD+ as the cofactor and was catalytically active towards short- and medium-chain aliphatic aldehydes, aromatic aldehydes and the products of lipid peroxidation, 4-hydroxy-nonenal (4-HNE) and malondialdehyde (MDA). Most importantly, human ALDH1B1 exhibited an apparent K_m of 55 μM for acetaldehyde, making it the second low K_m ALDH for metabolism of this substrate. The dehydrogenase activity of ALDH1B1 was sensitive to disulfiram inhibition, a feature also shared with ALDH2. The tissue distribution of ALDH1B1 in C57BL/6J mice and human was examined by Q-PCR, Western blotting and immunohistochemical analysis. Highest expression occurred in the liver, followed by the intestinal tract, implicating a potential physiological role of ALDH1B1 in these tissues. The current study is the first report on the expression, purification and biochemical characterization of human ALDH1B1 protein.
INTRODUCTION

Excessive alcohol consumption leads to a variety of psychological and pathological consequences. Chronic alcohol intake is often associated with damage to multiple organs, manifesting as hepatitis, liver cirrhosis, brain damage, and immune dysfunction. Many of the toxic effects of ethanol are attributable to ethanol metabolism. Ethanol is metabolized in the liver to acetaldehyde predominantly by class I alcohol dehydrogenase isoenzymes (ADH1A, ADH1B and ADH1C) located in the cytosol of hepatocytes. Aldehyde dehydrogenases (ALDHs) then oxidize acetaldehyde to acetate and water (Crabb et al., 2004). Acetaldehyde, the intermediate metabolite of ethanol, is toxic and its accumulation contributes significantly to ethanol-induced tissue damage (Eriksson, 2001; Meier and Seitz, 2008). The toxicity of acetaldehyde is caused by it covalently binding biological macromolecules, such as proteins and nucleic acids, and forming adducts that impair their functions (Niemela, 2007). Acetaldehyde also induces lipid peroxidation, increased collagen synthesis and glutathione depletion (Esterbauer et al., 1991). Moreover, protein adducts with acetaldehyde and products of lipid peroxidation trigger autoimmune responses that are associated with alcoholic liver disease (Stewart et al., 2004; Viitala et al., 2000). Metabolism and elimination of acetaldehyde is of great importance for cellular defense against ethanol-induced toxicities.

Among the nineteen known human ALDHs, mitochondrial ALDH2 and, to a lesser extent, cytosolic ALDH1A1 have been shown to play a major role in acetaldehyde oxidation and elimination (Vasiliou and Pappa, 2000). Both enzymes, homotetramers with a 55 KDa subunit, exhibit low Km constants for acetaldehyde, viz. 3.2 and 180 μM for human ALDH2 and A LDH1A1, respectively (Klyosov et al., 1996). The importance of ALDH2 in the clearance of acetaldehyde is exemplified in humans carrying the ALDH2*2 allele, which
encodes a functional mutation (Glu487Lys) of ALDH2 and results in poor binding affinity to cofactor NAD$^+$ and > 90% loss of enzyme activity (Larson et al., 2005; Yoshida et al., 1984). When compared to wild-type individuals, blood acetaldehyde levels climb 20- and 6-fold higher in homozygous and heterozygous individuals carrying this polymorphism, respectively, for equivalent levels of alcohol consumption (Crabb et al., 1989). This causes the “alcohol flushing” syndrome characterized by the reddening of the face, neck, and in some cases the entire body due to dilation of capillaries (Eriksson, 2001). Similar elevations in acetaldehyde have been observed in the Aldh2-null mice (Yue et al., 2009). The second enzyme involved in acetaldehyde metabolism is ALDH1A1. In addition to its crucial role in retinoic acid (RA) biosynthesis (Duester, 2000), cytosolic ALDH1A1 has been shown to be important in acetaldehyde metabolism and alcohol preference in rodent studies (Bond et al., 1991; Bond and Singh, 1990; Little and Petersen, 1983). Human studies also report the association of ALDH1A1 variants with enzyme deficiency in Caucasian “flushers” (Eriksson, 2001). Nevertheless, the contribution of ALDH1A1 to acetaldehyde metabolism appears to be less important in humans than rodent, likely because rodent ALDH1A1 has a much lower K_m for acetaldehyde (15 μM) (Klyosov et al., 1996).

ALDH1B1, previously known as LDHx and ALDH5, represents another mitochondrial ALDH isoenzyme. The human ALDH1B1 gene located on chromosome 9 spans a 5,957 bp region and is the only known ALDH gene with an intronless coding region (Hsu and Chang, 1991). ALDH1B1 gene is composed of two exons and one intron and has only one known transcript variant (Black et al., 2009). ALDH1B1 enzyme, like ALDH2 and ALDH1A1, is predicted to be a homotetramer; the subunit contains 517 amino acids with a N-terminal 19-residue mitochondrial leader signal. Based on peptide sequence alignment, human ALDH1B1 shares 65% and 75% homology with human ALDH1A1 and ALDH2, respectively. Northern blot analysis in human tissues have shown high levels of ALDH1B1
mRNA in the liver and testis and relatively low levels in other tissues (Hsu and Chang, 1991; Stewart et al., 1996). ALDH1B1 has also been found to be expressed abundantly in mouse and bovine corneas (Stagos et al., 2010), where cells are constantly exposed to UV-induced lipid peroxidation. To date, little is known regarding the biochemical properties and physiological roles of ALDH1B1. A study using crude lysate from HuH7 hepatoma cells reported that mitochondrial ALDH1B1 contributed to the oxidation of short chain aldehydes including acetaldehyde and propionaldehyde, implicating a role for ALDH1B1 in ethanol metabolism (Stewart et al., 1995). In agreement with this report, two recent large population-based studies identified two ALDH1B1 variants that were associated with drinking behavior (Ala69Val) and alcohol-induced hypersensitivity (Ala86Val) in Caucasians (Husemoen et al., 2008; Linneberg et al., 2010). These findings strongly suggest that ALDH1B1 enzyme may be involved in ethanol detoxification and modifications in this enzyme may contribute to alcohol-related diseases. To expand our current knowledge on the catalytic properties of ALDH1B1, we cloned and purified human recombinant ALDH1B1. Different aldehydes, including acetaldehyde, were tested as substrates. In addition, we surveyed the expression profile of ALDH1B1 mRNA and protein in multiple mouse tissues. This is the first report on the expression and biochemical characterization of human ALDH1B1 enzyme.
MATERIALS AND METHODS

Chemicals. 4-Hydroxynonenal (4-HNE) was obtained from Cayman Chemical Company (Ann Arbor, MI, USA). Malondiadehyde (MDA) was synthesized according to a method described previously (Esterbauer et al., 1991). All other chemicals and reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) unless otherwise specified.

Animals. Male C5 7BL/6J wild-type mice (≈ 12-wk old) were purchased from Jackson Laboratory (Bar Harbor, Maine). Aldh2(-/-) knockout mice were obtained from Dr. Kawamoto’s laboratory (Yu et al., 2009) and maintained in the C57BL/6J background. Mice were euthanized by CO2 inhalation followed by cervical dislocation. All procedures involving animals were approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Colorado Denver.

Construction, expression and purification of recombinant human ALDH1B1. The pCMV-XL4-ALDH1B1 plasmid harboring the full length of human ALDH1B1 cDNA (NM_000692.3) was purchased from OriGene (Rockville, MD, USA). The Open Reading Frame (ORF) of ALDH1B1 was amplified by polymerase chain reaction (PCR) using the primer pair 5’-CAAGGTACCTACAGGAAAGCCCAACCATGCTGCCTTCTGGCA-3’ (forward) and 5’-GTGAAAGACCTTTACGAGTTCTTGAGGAACCTTGATGGTG-3’ (reverse). The forward primer was designed to contain a KpnI site (GGTACC) for subcloning and a sequence motif (CCACC) 5’-ward of the start codon (ATG) to ensure correct initiation of translation in eukaryotic cells (Ding and Nam Ong, 2003). The reverse primer was designed to contain a HindIII site (AAGCTT) 3’-ward of the stop codon (TAA). The 1.6-kb PCR product was then digested with KpnI and HindIII and subcloned into the pBlueBac4.5
expression vector (Invitrogen, Carlsbad, CA). The correct sequence of inserted ORF of ALDH1B1 was confirmed by DNA sequencing analysis.

The pBlueBac4.5-ALDH1B1 plasmid was used to generate recombinant baculoviruses, which were plaque-purified and amplified in Sf9 insect cells by the Tissue Culture Core Facility at the University of Colorado Denver as described previously (Manzer et al., 2003). Approximately 6x 10^8 Sf9 cells were harvested 48 h post-infection by centrifugation at 1,000xg for 5 min and washed with phosphate-buffered saline (PBS), pH 7.4. Cell pellets were resuspended in lysis buffer (100 mM phosphate buffer, 1 mM EDTA, 0.1 mM 2-mercaptoethanol, 0.01% Triton X-100, 0.5 μg/ml leupeptin, 1 μg/ml pepstatin, 0.5 μg/ml aprotinin and 100 μg/ml PMSF, pH 7.5) and cell suspensions were homogenized by sonication on ice. The resulting crude lysate was then centrifuged at 35,000xg for 1 hr at 4°C and the supernatant subjected to affinity purification by Fast Protein Liquid Chromatography (FPLC) as previously described (Pappa et al., 2003). Briefly, 1-2 ml of Sf9 cell lysate was applied to a 1.6 X 6 cm 5'AMP-Sepharose 4B affinity column (Amersham Biosciences, Piscataway, NJ) pre-equilibrated with the binding buffer (100 mM potassium phosphate, 1 mM EDTA, 0.01% Triton X-100, pH 7.4). The bound ALDH1B1 was eluted by applying a gradient of 0 to 0.25 mM NAD⁺ dissolved in the binding buffer (0.005 mM increment per minute). Elution fractions (5 ml) were collected and examined for the presence of ALDH1B1 protein by Coomassie blue staining and Western blot analysis. Fractions containing ALDH1B1 were then pooled and concentrated in concentrating buffer (10 mM Tris-HCl, pH 7.4) at 4°C using a Amicon® concentrator (Millipore). The identity and purity of concentrated ALDH1B1 protein were confirmed by Coomassie blue staining, Western blot analysis and matrix-assisted laser/desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis (see below).
Western immunoblot. Tissues from wild-type or *Aldh2*/knockout mice were collected, flash-frozen in liquid nitrogen and stored at -80°C until use. Frozen tissues were homogenized in RIPA buffer (150 mM NaCl, 1% TritonX-100, 0.25% sodium deoxycholate, 0.1% SDS, 50 mM Tris, 1 mM EDTA, 1 mM PMSF, 1 µg/mL aprotinin, 1 µg/mL leupeptin, 1 µg/ml pepstatin, pH 7.4) on ice with a tissue tearor (BioSpec Products, Bartlesville). Tissue homogenates were centrifuged at 10,000xg at 4°C for 20 min and the supernatant was collected and used as tissue lysates. Proteins in tissue lysates (16-40 µg) or purified recombinant human ALDH1B1 (25-200 ng) were resolved by 10% SDS-PAGE and immunoblotted using primary antibodies as specified in the Results section. Rabbit polyclonal α-ALDH1B1 was raised against human ALDH1B1 peptide sequence ELDTQQGPQVDKEQFERVLGYIQLGKKEGAKLLCGGERGFFIKPTVFGGVQDDMR (amino acids 353-411) by the GenWay Biotech Inc. (San Diego, CA). To minimize the cross-reactivity towards ALDH2 protein, the antibody was re-absorbed by an ALDH2-bound column. Primary antibodies were used at dilutions of 1:5000 for anti-ALDH1B1, 1:1000 for polyclonal anti-ALDH2 (Lassen et al., 2005), 1:5000 for mouse monoclonal anti-GAPDH (Ambion Inc., Austin, TX), and 1:10000 for mouse monoclonal anti-β-ACTIN (Sigma, St. Louis, MO). Blocking reagents and corresponding secondary antibodies were purchased from Li-Cor Biosciences (Lincoln, Nebraska) or Calbiochem (San Diego, CA) and used according to manufacturer’s protocols. Protein bands were visualized using Li-Cor Odyssey infrared Imaging System (Lincoln, Nebraska) or chemiluminescence (PerkinElmer, Boston, MA).

MALDI-TOF MS. Purified recombinant human ALDH1B1 protein (2 µg) was resolved by 15% SDS-PAGE. The two protein bands, visualized by Coomassie blue staining, were excised and digested with trypsin (0.05 µg/µl in 25 mM ammonium bicarbonate) for 16 hr at 37°C. Digested peptides were then analyzed by MALDI-TOF MS on a 4800 plus MALDI...
TOF/TOF (ABI, Foster City, CA) equipped with a 200Hz solid-state laser using a matrix of α-cyano-4-hydroxycinnamic acid at 10 mg/ml in 50% ACN and 0.05% TFA. The sample was calibrated externally using a five point peptide calibration mixture from Sigma (ProteoMass Peptide Calibration Kit). Mass spectral data were collected in standard reflector mode over the mass range of 600 to 5000 m/z with a total of 400 shots collected at a laser intensity of 3300. MS/MS spectra were obtained using the standard 1kV acquisition method with CID turned on, air as the collision gas with a threshold of 1X10⁻⁶ torr. The laser intensity was set at 4300 and spectra were recorded for 2000 shots or until the accumulated spectra reached an estimated S/N of 75 (5 peaks and 8 sub-spectra minimum). Database searches were performed on MASCOT search engine (www.matrixscience.com, Matrix Science, London, England) using ABI GPS software. Combined searches of both MS and MS/MS data were performed using the MSDB database.

Enzyme kinetic studies. The enzymatic activity of purified recombinant human ALDH1B1 was determined by monitoring the formation of NADH at 340 nm during the oxidation of aldehyde substrates using a Beckman DU-640 spectrophotometer. A molar extinction coefficient of 6.22 x 10⁻³ was used to calculate the rate of NADH formation (Pappa et al., 2003). Prior to the enzyme assay, ALDH1B1 protein was first reactivated by incubation with 50 mM 2-mercaptoethanol at 25°C in the dark for 1 hr. Aldehyde substrates were prepared either in ddH₂O or 20% ethanol (the final concentration of ethanol being < 1%). Eight to ten concentrations of individual aldehyde substrate representing three to five below the apparent Km and five above the apparent Km were used. The reaction was initiated by adding the substrate into the reaction mixture containing 0.1 M sodium pyrophosphate, 1 mM NAD⁺, 1 mM pyrazole, 1.0 mM 2-mercaptoethanol and 5 μg activated ALDH1B1 protein. Production of NADH was monitored for 3 min at 25°C. For the Km study for NAD⁺ and NADP⁺,
propionaldehyde (10 mM) was used as the substrate to define the activity. The disulfiram inhibition study was performed using propionaldehyde (100, 500 and 1000 μM) as the substrate. In these studies, 100x stock solution of disulfiram dissolved in DMSO was added to the reaction mixture and pre-incubated with activated ALDH1B1 protein for 5 min prior to the addition of substrate.

The esterase activity of human ALDH1B1 was determined by monitoring the formation of \(p \)-nitrophenolate at 400 nm using a Beckman DU-640 spectrophotometer. A molar extinction coefficient of 18.3x10\(^{-3}\) was used to calculate the rate of \(p \)-nitrophenolate formation (Wang and Weiner, 1995). Briefly, activated ALDH1B1 protein (5 μg) was mixed with \(p \)-nitrophenyl acetate (\(p \)-NPA) at various concentrations (0, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6 and 2.0 mM) in 0.1 M sodium phosphate buffer (pH 7.4); \(p \)-Nitrophenolate formation was then monitored for 3 min at 25°C.

For all enzymatic analyses, apparent kinetic constants (\(V_{\text{max}} \) and \(K_m \)) were determined using Sigma Plot Enzyme Kinetic Module (version 7.0, 2001; SPSS Inc., Chicago, IL, USA) by means of the Michaelis-Menten model. The enzyme activity was reported as nmol/min/mg protein. Data were reported as mean ± S.E. from three independent experiments carried out in triplicate.

Reverse transcription and quantitative real-time PCR (Q-PCR). Total RNA was isolated from mouse tissues using RNeasy Mini kit (Qiagen, Valencia, CA) according to manufacturer’s protocol. cDNA was synthesized using a Superscript III RT kit (Invitrogen, Carlsbad, CA) according to manufacturer’s instruction, using 5 μg of total RNA in a 20 μl reaction volume. Q-PCR reactions were carried out using 0.03 μg cDNA by the Taqman gene expression assay (A BI, Foster City, CA) for mouse Aldh1b1 gene (primer ID: Mm00728303_s1) and mouse Aldh2 gene (primer ID: M m00477463_m1) according to
manufacturer’s protocol. Expression of β-actin was used for normalization of C_T data according to the ΔΔC_T method (Livak and Schmittgen, 2001). The mRNA level of ALDH1B1 in the liver was set as the control (=1) and relative mRNA levels were expressed as fold of control. Data were reported as mean ± S.E. of 3-4 animals.

Immunohistochemistry (IHC) and immunofluorescence (IHF). Formalin-fixed and paraffin-embedded normal human tissues were procured by IHCtech (Aurora, CO) in accordance with approvals and guidelines to use for IHC staining. Tissues from C57BL/6J wild-type male mice were fixed in 4% paraformaldehyde, dehydrated in graded ethanol solutions and embedded in paraffin. Tissue sections (4-μm) were then deparaffinized, rehydrated and processed for hematoxylin and eosin (HE) staining or for immunohistostaining. IHC staining of ALDH1B1 was performed using the TSA Biotin System Kit (NEN Life Science Products, Boston, MA) according to the manufacturer’s protocol. Primary antibodies were used at a dilution of 1:200 for rabbit polyclonal anti-ALDH1B1 (see above) or for rabbit pre-immune serum (serum control). Secondary antibody was used at a dilution of 1:250 for goat polyclonal anti-rabbit IgG (Sigma, St. Louis, MO). Images were obtained using a Nikon upright microscope linked to a Nikon digital camera.

For IHF staining, tissue sections were blocked with 3% BSA in PBS for 1 hr at room temperature, followed by incubation with rabbit polyclonal anti-ALDH1B1 (1:200) overnight at 4°C. Samples were then washed and stained with FITC-conjugated goat anti-rabbit IgG (Sigma, St. Louis, MO). Tissue sections were co-stained with 4,6-diamidino-2-phenylindole (DAPI) to identify the nucleus. IHF staining was evaluated using a fluorescence microscope (Nikon Eclipse E600).
RESULTS

Baculovirus-mediated expression and purification of recombinant human ALDH1B1

The ORF of human ALDH1B1 was inserted into the pBlueBac4.5 vector for recombination with baculovirus DNA and recombinant viruses were used to infect Sf9 insect cells. Eleven independently isolated plaques were amplified and screened for the expression of ALDH1B1 protein by Western blot analysis in crude extracts of Sf9 cells (data not shown). The recombinant virus with the highest expression of ALDH1B1 protein was used for subsequent infection of Sf9 cells at a multiplicity of infection (MOI) of 1. Cell lysates from infected Sf9 cells were prepared at 48 hr post-infection (as described in the Material and Methods section) and used for the purification of recombinant human ALDH1B1.

Purification of ALDH1B1 protein was performed by affinity chromatography using a 5’-AMP-Sepharose 4B column as described in the Material and Methods section. This single-step process yielded about 200-300 μg of purified protein from 500 ml of Sf9 cell cultures. When visualized by Coomassie blue staining on a SDS-PAGE gel (Fig. 1A), the purified proteins revealed two peptide bands running slightly above 50 kDa, in agreement with the predicted size of ALDH1B1 (~55 kDa). By Western blot analysis (Fig. 1B), both peptides immunoreacted with a rabbit polyclonal antibody raised against the human ALDH1B1 peptide sequence (amino acids 353-411). To further verify the identity of the purified proteins, the two peptide bands were excised from a Coomassie blue-stained SDS-PAGE gel and subjected to MALDI-TOF MS analysis following trypsin digestion (Fig. 2). The MALDI-TOF MS analysis showed thirteen peaks for both the upper and lower band corresponding to predicted amino acid sequence of ALDH1B1 protein (Fig. 2A), with a total sequence coverage of 30% and 37% for the higher and lower molecular weight band, respectively (Fig. 2B).
Biochemical characterization of human ALDH1B1

Our previous study demonstrated that recombinant mitochondrial ALDH2 enzyme is prone to inactivation, likely due to the oxidation of sulfhydryl residues that are essential for the catalytic activity of ALDHs (Lassen et al., 2005). Since ALDH1B1 shows ≈75% peptide sequence identity with ALDH2, we expected the same characteristic being shared by recombinant ALDH1B1. Indeed, following purification, recombinant human ALDH1B1 exhibited negligible aldehyde oxidation activity even at saturating concentrations of cofactor and substrate (data not shown). Under these same reaction conditions, recombinant human ALDH1B1, like recombinant ALDH2, was reactivated by pre-incubation with the reducing agent 2-mercaptoethanol at an optimal concentration at 50 mM (data not shown). Thus, for all the enzyme kinetic studies, recombinant human ALDH1B1 was pre-activated by incubation with 50 mM 2-mercaptoethanol at 25°C for 1 hr.

The kinetic properties of human ALDH1B1 enzyme were studied using a wide range of aldehydes as substrates and using either NAD⁺ or NADP⁺ as the cofactor. The apparent K_m and V_{max} values derived from these studies are summarized in Table 1. ALDH1B1 showed an absolute preference for NAD⁺ ($K_m = 3.6 \mu M$) as the cofactor; no catalytic activity occurred when NADP⁺ was used. The recombinant human ALDH1B1 exhibited a high affinity for aliphatic aldehydes, including acetaldehyde, propionaldehyde, hexanal and nonanal, as reflected by apparent K_m’s less than 100 μM; although there was a greater affinity towards medium-chain saturated aldehydes ($K_m = 0.4$ and $0.8 \mu M$ for hexanal and nonanal, respectively) relative to short-chain aldehydes ($K_m = 55$ and $14 \mu M$ for acetaldehyde and propionaldehyde, respectively). Human ALDH1B1 had an apparent Km of 50 μM for the aromatic aldehyde benzaldehyde. The order of the catalytic efficiency of human ALDH1B1 for these aldehydes, as reflected by V_{max}/K_m, was hexanal > nonanal > propionaldehyde >
acetaldehyde > benzaldehyde. ALDH1B1 was also capable of metabolizing products of lipid peroxidation, namely 4-HNE and MDA, albeit with low affinity for substrate binding ($K_m > 400 \mu M$) and poor catalytic efficiency ($V_{max}/K_m < 1$). On the other hand, ALDH1B1 exhibited no catalytic activity for oxidizing unsaturated aliphatic aldehydes, i.e. trans-2-hexenal, trans-2-nonenal and trans-2-dodecenal. Since disulfiram is a potent inhibitor of both ALDH1A1 and, to a lesser extend, ALDH2 in vitro, we also tested whether ALDH1B1 was a target of disulfiram inhibition. As shown in Fig. 3, ALDH1B1 was less sensitive to inhibition by disulfiram than ALDH1A1. At the lowest concentration of substrate tested (propionaldehyde = 100 μM), ALDH1B1 was not affected by disulfiram. Only at higher concentrations of propionaldehyde (500 and 1000 μM) was ALDH1B1 activity inhibited, with the extent of inhibition being < 40%. On the other hand, human ALDH1A1 activity was inhibited > 80% by the same concentration of disulfiram at all propionaldehyde concentrations.

Mitochondrial ALDH2 has been reported to have esterase activity (Sheikh and Weiner, 1997). Given the 75% peptide homology shared by ALDH2 and ALDH1B1, we assessed whether ALDH1B1 also had esterase activity by monitoring the formation of p-nitrophenolate (p-NPA). Human ALDH1B1 exhibited a maximal esterase activity of 1895 ± 91 nmol/min/mg and an apparent K_m of 288 ± 46 μM for p-NPA. Compared with the reported K_m of human ALDH2 for p-NPA (Sheikh and Weiner, 1997), this K_m of ALDH1B1 (current study) was 40-fold higher.

Expression of ALDH1B1 in mouse tissues

To understand the tissue distribution of ALDH1B1 expression, we first assessed the messenger level of Aldh1b1 gene in various tissues from male C57BL/6J mice by Q-PCR and compared it with the Aldh2 gene (Fig. 4A). For easy comparison, the mRNA level of
ALDH1B1 in the liver was set as the control (=1) and relative mRNA levels were expressed as fold of control. The highest ALDH1B1 mRNA expression was detected in liver and part of the small intestine (ileum and jejunum); moderate levels (≈ 0.5 fold) were observed in the testis, distal colon, lung, heart and duodenum, and lowest levels (≈ 0.03 fold) were found in the kidney and stomach. When compared to the Aldh1b1 gene, Aldh2 gene was comparably expressed in intestinal tissues (< 3-fold of ALDH1B1 mRNA level) but more robustly expressed in other examined tissues, including the kidney, liver, testes, stomach, lung and heart, viz. 1135-, 145-, 64-, 63-, 16- and 11-fold of ALDH1B1 mRNA, respectively.

The protein levels of ALDH1B1, ALDH2 and ALDH1A1 were determined by Western blot analysis (Fig. 4B). To identify any potential compensatory interactions between these closely-related ALDHs, we also investigated ALDH1B1 and ALDH1A1 expression in tissues from Aldh2−/− knockout mice (Fig. 4B). Partially in agreement with the mRNA expression profiles, ALDH1B1 protein was expressed abundantly in liver, small intestine and testes. In these tissues, ALDH2 protein was also expressed at high levels. In large intestine and lung, ALDH1B1 and ALDH2 were expressed moderately and at comparable levels. Interestingly, when compared with ALDH1B1, ALDH2 seemed to be differentially expressed in certain tissues, including stomach, kidney and heart. In a similar manner as the mitochondrial ALDHs, cytosolic ALDH1A1 showed high expression in liver, testes and small intestine; in testes, lung tissue had a relatively high abundance of ALDH1A1 expression. As expected, ALDH2 protein was undetectable in examined tissues from Aldh2−/− knockout mice. In these tissues, however, ALDH1B1 and ALDH1A1 protein levels were no different from those obtained from wild-type mice, except that ALDH1A1 appeared to be upregulated in stomach from Aldh2−/− knockout mice.

The distribution of ALDH1B1 in several mouse tissues was further investigated by immunohistochemical assay (Fig. 5A). In the liver, ALDH1B1 displayed a peri-central
distribution and was detected in the cytoplasm of hepatocytes. In the small intestine, ALDH1B1 was intensely stained in the cytoplasm of absorptive epithelial cells. In the large intestine (colon), mild staining of ALDH1B1 was observed mostly in locations where colon stem cells reside. In the lung, ALDH1B1 appeared to be expressed predominantly in the bronchiolar epithelium and Clara cells of small airways, especially in the terminal bronchioles. In the testes, intense ALDH1B1 immunoreactivity was observed in the epithelial cells lining the seminiferous tubules. In the thymus, ALDH1B1 seemed to be expressed specifically in the medulla, which contains fewer lymphocytes but more epithelial cells. To better visualize the cellular localization of ALDH1B1 protein, we performed confocal immunofluorescent staining for ALDH1B1 in the two tissues that showed the highest expression, i.e., liver and small intestine (Fig. 5B). The staining of ALDH1B1 exhibited a cytoplasmic punctuate pattern in both tissues, supporting an organelle-associated localization of ALDH1B1.

Expression of ALDH1B1 in human tissues

The expression of ALDH1B1 in human tissues, including liver, pancreas, small intestine, colon, and lung, was investigated by immunohistochemical staining (Fig. 6). The expression patterns of ALDH1B1, in terms of the distribution and intensity of immunopositivity, in these human tissues were quite consistent with what was seen in mouse tissues (Fig. 4A). Furthermore, the punctuate positive-staining of human ALDH1B1 was clearly noted in the liver and pancreas.
DISCUSSION

The major enzyme that metabolizes a cetaldehyde, the most toxic metabolite of ethanol, is mitochondrial ALDH2. The inactive variant (Glu487Lys) of human ALDH2 is responsible for ethanol-induced hypersensitivity which serves as a deterrent against alcoholism in Asian populations (Yoshida et al., 1984). While about 50% of Asians are carriers of this variant, it is nearly absent in Caucasians. Recent studies have identified the genetic determinants of drinking behavior and alcohol hypersensitivity among Caucasians to be polymorphisms in the human ALDH1B1 gene, which encodes another mitochondrial ALDH isoenzyme (Husemoen et al., 2008; Linneberg et al., 2010). These studies and others (Stewart et al., 1995) are suggestive of a potentially important role of ALDH1B1 in the metabolism of acetaldehyde, but more direct confirmation remains to be established. Herein, we have cloned, expressed and purified recombinant human ALDH1B1 using a baculovirus expression system along with affinity chromatography. Human ALDH1B1 is catalytically-active towards a wide range of aldehyde substrates and utilizes NAD+, but not NADP+, as the cofactor. The optimal substrates of human ALDH1B1 ($K_m < 1 \mu M$) are medium-chain aldehydes, including hexanal and nonanal. Short-chain propionaldehyde and aromatic benzaldehyde are also good substrates for ALDH1B1. Most importantly, human ALDH1B1 exhibits an intermediate K_m (55 μM) for acetaldehyde when compared with human ALDH2 ($K_m = 3.2 \mu M$) and human ALDH1A1 ($K_m = 180 \mu M$) (Klyosov et al., 1996), suggesting that ALDH1B1 indeed represents a low K_m ALDH for acetaldehyde. Thus, our study provides direct evidence to support the hypothesis that ALDH1B1 represents the second mitochondrial ALDH, a side from ALDH2, that actively oxidizes a cetaldehyde and consequently may be important for the metabolism of ethanol.
Disulfiram is a drug used to treat chronic alcoholism by producing an undesirable acute sensitivity to alcohol. The effect of disulfiram is attributable to its action in elevating acetaldehyde levels by inhibiting ALDH1A1 and ALDH2 (Petersen, 1992). Recombinant human ALDH1A1 (Ki = 0.2 μM) is sixty-times more sensitive to inhibition by disulfiram than recombinant human ALDH2 (Ki > 12 μM) (Lam et al., 1997). In the present study, recombinant human ALDH1B1 was inhibited by disulfiram but to a lesser extent than ALDH1A1 when propionaldehyde was used as substrate, a finding consistent with a previous study (Stewart et al., 1995). Such sensitivity of ALDH1B1 to disulfiram inhibition may have therapeutic ramifications on the use of disulfiram in vivo.

An interesting observation is that recombinant human ALDH1B1 expressed in Sf9 insect cells migrates as double bands by SDS-PAGE. Based on their locations relative to the molecular weight marker, the two protein bands correspond to ≈55 and ≈58 KDa peptides. MALDI-TOF MS and Western blot analysis confirmed the identity of both peptides to be ALDH1B1. We propose that the 58 kDa protein band represents the 517-residue intact translated peptide and the 55 kDa protein represents the mature form after the mitochondrial lead signal is excised. Alternatively, the 58 KDa protein band could be a post-translationally modified form of ALDH1B1, e.g., one that has been glycosylated or phosphorylated or both. Glycosylation has been documented previously for microsomal ALDH (Masaki et al., 1996). Recently, phosphorylation has been identified to occur to ALDH2. One study reported that ALDH2 is phosphorylated and activated by the survival kinase protein kinase C epsilon and that activation of ALDH2 is cardioprotective (Chen et al., 2008). On the other hand, it has also been reported that carbon tetrachloride (CCl4) exposure inhibits ALDH2 activity through JNK-mediated phosphorylation; inactivation of ALDH2 contributes to CCl4-induced liver damage (Moon et al., 2010). These studies suggest that the effect of phosphorylation on ALDH2, and likely of other ALDHs, is variable, leading to activation or inactivation of
ALDH depending on the specific stress. Further studies are needed to determine whether phosphorylation is a mechanism regulating ALDH1B1.

ALDH1B1 messenger is actively transcribed in multiple human tissues (Hsu and Chang, 1991; Stewart et al., 1996). In the present study, we observed a similar tissue expression profile in mouse tissues. Liver had the highest level of ALDH1B1 and ALDH2 mRNAs relative to other examined tissues, supporting an important role of the two mitochondrial ALDHs in the heart and liver. In most tissues, except the intestine, ALDH2 messenger is predominant by up to three orders of magnitude. Much higher levels of ALDH2 mRNA relative to ALDH1B1 mRNA has also been found in human liver (Hsu and Chang, 1991). The predominance of the hepatic ALDH2 over ALDH1B1 could possibly explain the inability of Asian carriers of ALDH2*2 allele to efficiently metabolize the acetaldehyde produced after alcohol consumption in spite of the presence of ALDH1B1 enzyme. Along the mouse gastrointestinal tract, there seems to be a gradient of ALDH1B1 mRNA expression which starts at baseline in the duodenum, peaks in ileum and drops back to baseline in the colon. The levels of ALDH1B1 mRNA in these tissues are comparable to that of ALDH2 mRNA, suggesting a more important role of ALDH1B1 in mouse intestine. It is well established that the liver plays a major role in drug and xenobiotic bio transformation. However, metabolism during absorption across the intestinal wall also influences the bioavailability of orally-administered compounds (van de Kerkhof et al., 2007). For instance, it has recently been reported that intestinal cytochrome P450 (CYP) 1A1, but not the hepatic CYP1A1, is the key enzyme in oral benzo[a]pyrene detoxification (Shi et al., 2010). Given that ethanol is usually administered via the oral route, ALDH1B1 in the intestinal wall may play an important role in the initial metabolism of ethanol or of orally-ingested aldehydes, whereas ALDHs associated with the liver would be anticipated to process any aldehydes in the hepatic portal vein or in the systemic circulation. Interestingly, ADH1, the major alcohol
metabolizing enzyme converting ethanol to acetaldehyde, is predominantly expressed in the small intestine (Vaglenova et al., 2003). It should be noted that the tissue distribution of ALDH1B1 protein, in both human and mouse, agrees well with the pattern of ALDH1B1 messenger, indicating that the transcriptional regulation is likely the key mechanism controlling the expression of ALDH1B1 protein.

Genome-wise, the two mitochondrial ALDHs, namely ALDH2 and ALDH1B1, are conserved across taxa, including fungi, mammals and plants (Liu and Schnable, 2002). Why would nature select to have two closely-related ALDHs present in the mitochondria? One simple explanation could be that the two mitochondrial ALDHs have different biochemical functions and/or differential expression in tissues at different developmental stages. Several studies have associated ALDH1B1 with functions other than an acetaldehyde metabolism. A recent microarray study showed that ALDH1B1 was upregulated in medulloblastoma cell lines resistant to cyclophosphamide, suggesting a possible role of ALDH1B1 enzyme in cancer drug resistance (Bacolod et al., 2008). Another study reported that the dynamic expression of ALDH1B1 correlated with granulocytic development of hematopoietic stem cells; in this report, the author proposed a possible role of ALDH1B1 in retinoic acid metabolism mediating the effect (Luo et al., 2007). A transgenic mouse line having forced expression of human ALDH2*2 variant exhibited distinct phenotypes, including small body size, reduced muscle mass, diminished fat content and osteopenia (Endo et al., 2009), all of which are absent from ALDH2-null mice (Yu et al., 2009). One hypothesis to explain such a discrepancy is that the ALDH2*2 mutant subunit not only inactivates the ALDH2 wild-type subunit but also inactivates other ALDHs by forming heterotetramers, thereby blocking their functions. Given >75% homology in peptide sequence and the same mitochondrial localization, ALDH1B1 subunit could be a potential binding partner of ALDH2 subunit. Taken together, these observations indicate the involvement of ALDH1B1 in multiple
physiological or pathological processes, the biochemical mechanism(s) of which merits further investigation.

In summary, the present study describes, for the first time, the expression, purification and biochemical characterization of human ALDH1B1 enzyme. Our results demonstrate that mitochondrial ALDH1B1 represents a low \(K_m \) ALDH for acetaldehyde metabolism and therefore is consistent with ALDH1B1 being actively involved in the metabolism of ethanol. The differential tissue distribution of ALDH1B1 argues in favor of a role for ALDH1B1 in intestinal tissues. The observed biochemical properties of ALDH1B1 are consistent with a physiological role(s) of this ALDH isoenzyme.
References

DMD #34678

† These authors have contributed equally to this work.

Current address: Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece 41221 (D.S.).

This work was supported by National Institutes of Health, USA [grants AA017754 and EY17963].
LEGENDS FOR FIGURES

Fig. 1. Purified recombinant human ALDH1B1 revealed by SDS-PAGE. (A) Purified human ALDH1B1 protein was visualized by Coomassie blue staining following SDS-PAGE. Purified ALDH1B1 appeared as double protein bands running around 55–58 kDa. Lane 1: molecular weight marker; lane 2: recombinant human ALDH1B1 (2 μg). (B) Increasing amounts of ALDH1B1 protein (25 – 200 ng) was loaded and detected by Western blot (WB) using a rabbit polyclonal antibody (anti-ALDH1B1) against human ALDH1B1 peptide (see Materials and Methods). Both protein bands reacted with the antibody.

Fig. 2. Confirmation of the identity of purified ALDH1B1. (A) The two protein bands visualized by Coomassie blue staining were excised and analyzed by MALDI–TOF MS. The two bands each showed thirteen peaks corresponding to amino acid sequences of ALDH1B1 protein predicted from the ALDH1B1 cDNA. (B) The predicted peptide sequence of human ALDH1B1. The N-terminal 19 residues (in red) are predicted mitochondrial leader signal. Distinct peptide sequences of upper and lower protein bands picked up by MALDI-TOF MS analysis are highlighted in yellow and blue, respectively. Peptide sequences positive for both protein bands are highlighted in orange. The peptide used to generate the polyclonal antibody against ALDH1B1 is underlined and highlighted in bold.

Fig. 3. Inhibition of the dehydrogenase activity of ALDH1B1 and ALDH1A1 by disulfiram. Disulfiram (10 μM) was pre-incubated with recombinant human ALDH1B1 or ALDH1A1 for 5 min prior to initiation of reaction. Various concentrations of propionaldehyde were used as substrate. The ALDH activity of enzymes in presence of disulfiram was expressed as a percentage of the activity observed at the same concentration.
of substrate in the absence of disulfiram (control). Data represent mean ± S.E. from three independent experiments.

Fig. 4. Expression of ALDH1A1, ALDH1B1 and ALDH2 in mouse tissues. (A) The mRNA levels of ALDH1B1 and ALDH2 were measured by Q-PCR. The hepatic level of ALDH1B1 mRNA was set as the control (=1) after normalization with β-Actin. Relative levels of mRNA are reported as fold of control. The ratio of ALDH1B1/ALDH2 mRNA levels is indicated for each examined tissues. Data represent mean ± S.E. from 3-4 mice. (B) Protein levels of ALDH1A1, ALDH1B1 and ALDH2 were detected by Western blot in tissues from wild-type (+/+) and ALDH2-null (-/-) mice.

Fig. 5. Tissue distribution of ALDH1B1 protein by immunohistostaining. Mouse tissues were processed for immunohistochemical (A) or immunofluorescent (B) analysis of ALDH1B1 as described in Materials and Methods. (A) Representative images of tissue sections stained for general histology (H&E), ALDH1B1-immunoreactivity (α-ALDH1B1) and serum control (Pre-immune). Liver displayed intense ALDH1B1 immunopositivity (brown) with a pericentral distribution. The absorptive epithelial cells of small intestine also showed high staining. Immunopositivity in the large intestine appeared to colocalize with stem cells. In the lung, ALDH1B1 was found to be expressed predominantly in the bronchiolar epithelium and Clara cells of small airways. In the testes, intense immunoreactivity was observed in the epithelial cells lining the seminiferous tubules. In the thymus, immunopositivity was detected specifically in the medulla. (B) Confocal immunofluorescent staining for ALDH1B1 (green) in the liver and small intestine exhibited a cytoplasmic punctate pattern, in agreement with an organelle-associated localization of
ALDH1B1. Sections were co-stained with DAPI for nuclear staining. Overlay represents the ALDH1B1 and DAPI images combined. Magnification: A, 400x; B, 1000x.

Fig. 6. Distribution of ALDH1B1 in human tissues by immunohistochemistry. Formalin-fixed and paraffin-embedded normal human tissues were processed in accordance with approvals and guidelines for IHC staining using polyclonal anti-human ALDH1B1. The absorptive epithelium of small intestine revealed the highest intensity of ALDH1B1 immunopositivity (brown). Hepatocytes and pancreatic acinar cells also showed strong positive-staining for ALDH1B1, which displayed a cytoplasmic punctate pattern. The immunopositivity of ALDH1B1 in colon appeared to colocalize with stem cells. In the lung, ALDH1B1 seemed to be expressed predominantly in the bronchiolar epithelium and Clara cells of small airways. Magnification: top panels, 400x; bottom panels, 1000x.
Table 1. Kinetic properties of recombinant human ALDH1B1.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>(V_{max}) (nmol/min/mg)</th>
<th>(K_m) (μM)</th>
<th>(V_{max}/K_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAD(^+)</td>
<td>1277 ± 42</td>
<td>3.6 ± 0.5</td>
<td>359</td>
</tr>
<tr>
<td>NADP(^+)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>665 ± 55</td>
<td>55 ± 10</td>
<td>12</td>
</tr>
<tr>
<td>Propionaldehyde</td>
<td>789 ± 155</td>
<td>14 ± 3</td>
<td>56</td>
</tr>
<tr>
<td>Hexanal</td>
<td>1007 ± 30</td>
<td>0.4 ± 0.002</td>
<td>2398</td>
</tr>
<tr>
<td>Nonanal</td>
<td>686 ± 55</td>
<td>0.8 ± 0.1</td>
<td>879</td>
</tr>
<tr>
<td>Benzoaldehyde</td>
<td>458 ± 36</td>
<td>50 ± 8</td>
<td>9.1</td>
</tr>
<tr>
<td>4-Hydroxynonenal (4-HNE)</td>
<td>2043 ± 163</td>
<td>3383 ± 304</td>
<td>0.6</td>
</tr>
<tr>
<td>Malondialdehyde (MDA)</td>
<td>348 ± 21</td>
<td>466 ± 13</td>
<td>0.7</td>
</tr>
<tr>
<td>Unsaturated aldehydes (trans-2-hexenal,</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Trans-2-nonenal, Trans-2-dodecenal)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p)-Nitrophenol acetate ((p)-NPA)</td>
<td>1895 ± 91</td>
<td>288 ± 46</td>
<td>6.6</td>
</tr>
</tbody>
</table>

Apparent \(K_m \) and \(V_{max} \) values were determined by fitting the data to the Michaelis-Menten equation using Sigma Plot. Data represent mean ± S.E. from three independent experiments carried out in triplicate. The kinetic parameters for NAD\(^+\) and NADP\(^+\) were determined using propionaldehyde (10 mM) as the substrate. NAD\(^+\) (1 mM) was used for aldehyde substrate experiments.
FIGURE 3

ALDH activity (% control) vs. Propionaldehyde (μM)

- Human ALDH1B1
- Human ALDH1A1