Significance and Regional Dependency of PEPT1 in the Intestinal Permeability of Glycylsarcosine: *In Situ* Single-Pass Perfusion Studies in Wild-Type and *Pept1* Knockout Mice

Dilara Jappar, Shu-Pei Wu, Yongjun Hu, and David E. Smith

Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA (D.J., S.P.W., Y.H., D.E.S)
Running Title: GLYSAR INTESTINAL PERMEABILITY IN PEPT1+/+ AND PEPT1−/− MICE

Address correspondence to: Dr. David E. Smith, Department of Pharmaceutical Sciences, University of Michigan, 4742 Medical Sciences II, 1150 W Medical Center Drive, Ann Arbor, Michigan, 48109-5633, USA; Fax number: 734-763-3438; Telephone number: 734-647-1431; E-mail address: smithb@umich.edu

Number of Text Pages: 29
Number of Tables: 0
Number of Figures: 7
Number of References: 40
Number of Words in Abstract: 226
Number of Words in Introduction: 756
Number of Words in Discussion: 1396

ABBREVIATIONS: GlySar, glycylsarcosine; PEPT, peptide transporter; PHT, peptide/histidine transporter; POTs, proton-coupled oligopeptide transporters;
ABSTRACT:

The purpose of this study was to evaluate the role, relevance, and regional dependency of PEPT1 expression and function in mouse intestines using the model dipeptide glycylsarcosine (GlySar). After isolating specific intestinal segments, in situ single-pass perfusions were performed in wild-type and Pept1 knockout mice. The permeability of [3H]GlySar was measured as a function of perfusate pH, dipeptide concentration, potential inhibitors, and intestinal segment, along with PEPT1 mRNA and protein. We found the permeability of GlySar to be saturable (Km=5.7 mM), pH-dependent (maximal value at pH 5.5), and specific for PEPT1; other peptide transporters such as PHT1 and PHT2 were not involved as judged by the lack of GlySar inhibition by excess concentrations of histidine. GlySar permeabilities were comparable in the duodenum and jejunum of wild-type mice, but much larger than that in ileum (about 2-fold). A PEPT1-mediated permeability was not observed for GlySar in the colon of wild-type mice (<10% residual uptake as compared to proximal small intestine). Moreover, GlySar permeabilities were very low and not different in the duodenum, jejunum, ileum, and colon of Pept1 knockout mice. Functional activity of intestinal PEPT1 was confirmed by real time-PCR and immunoblot analyses. Our findings suggest that a loss of PEPT1 activity (e.g., due to polymorphisms, disease or drug interactions) should have a major effect in reducing the intestinal absorption of di/tripeptides, peptidomimetics, and peptide-like drugs.
Introduction

In the gastrointestinal lumen, proteins are converted into large peptides by gastric and pancreatic proteases, which subsequently undergo further hydrolysis into small peptides (80%) and free amino acids (20%) by various peptidases in the brush border membrane of intestinal epithelia (Ganapathy et al., 2006). The final end products of protein digestion are absorbed into the enterocytes predominately in the form of di/tripeptides as opposed to free amino acids. PEPT1, a proton-coupled oligopeptide transporter (POT) with high capacity and low affinity, is believed to be the primary mechanism by which these small peptides enter the cell. Once inside the enterocyte, the majority of di/tripeptides undergo further hydrolysis into their constituent amino acids by cytoplasmic peptidases and exit the epithelial cells by a distinct family of basolateral amino acid transporters. Those small peptides that are resistant to cytoplasmic peptidases may exit the enterocytes intact by crossing the basolateral membrane via a peptide transporter that has yet to be cloned.

The POTs are membrane proteins that are responsible for translocating di/tripeptides across biological membranes via an inwardly-directed proton gradient and negative membrane potential (Rubio-Aliaga and Daniel, 2002; Daniel and Rubio-Aliaga, 2003; Herrera-Ruiz and Knipp, 2003; Daniel and Kottra, 2004). Thus far, four members of the POT family, specifically PEPT1 (SLC15A1), PEPT2 (SLC15A2), PHT1 (SLCA4) and PHT2 (SLCA3), have been cloned in mammals. In the intestine, PEPT1 functions at the apical membrane by mediating the electrogenic uphill transport of substrates and downhill transport of protons into epithelial cells (i.e., tertiary-active carrier). The driving force for this proton gradient is established by an apical Na⁺/H⁺ antiporter (i.e., secondary-active carrier), whereas the driving force for the inwardly-directed sodium gradient is established by Na⁺/K⁺-ATPase, located at the basolateral membrane.
of intestinal epithelia (i.e., primary-active carrier). In addition to the nutritional role of absorbing nitrogen in the form of di/tripeptides, PEPT1 transports a number of peptide-like therapeutic agents such as β-lactam antibiotics, angiotensin-converting enzyme inhibitors, renin inhibitors, bestatin, and the antiviral prodrug valacyclovir (Brandsch et al., 2008; Rubio-Aliaga and Daniel, 2008). Due to its broad substrate specificity and high capacity, PEPT1 is considered an attractive target for drug delivery strategies aimed at improving the bioavailability of poorly permeable drugs.

PEPT1 is the most extensively studied transporter among the POT members because of its physiological and pharmacological importance in the absorption of di/tripeptides and peptide-like drugs from small intestine. However, most of the previous information regarding PEPT1 structure-function and significance was obtained from in vitro studies such as brush border membrane vesicles, cell cultures, and Xenopus oocytes, all of which use non-physiological conditions that lack blood flow. It should also be appreciated that other POT family members are expressed in the intestine. For example, PEPT2 is found in glial cells and tissue-resident macrophages of the enteric nervous system (Rühl et al., 2005). Moreover, the peptide/histidine transporters PHT1 and PHT2 have been found in intestinal tissue segments (Herrera-Ruiz et al., 2001), and immunohistochemical analyses have indicated that PHT1 is expressed in the villous epithelium of small intestine (Bhardwaj et al., 2006). The functional significance of PEPT2, PHT1 and PHT2, however, in the intestinal absorption of peptides/mimetics and peptide-like drugs is uncertain.

Heterogeneity has been observed in the intestinal expression of PEPT1 in mouse and human. Immunolocalization studies demonstrated that PEPT1 was expressed in the apical membrane of enterocytes in the small intestine (i.e., duodenum, jejunum and ileum) of both
species with little or no expression in normal colon (Walker et al., 1998; Groneberg et al., 2001). Whether or not PEPT1 activity agrees with its expression levels in various intestinal segments is still unknown. This heterogeneity, along with the existence of multiple peptide transport systems with overlapping substrate specificity, makes it difficult if not impossible to define the function and significance of a single specific gene product.

A recent paper by Hu et al. (2008) described for the first time the development of Pept1 null mice, and their preliminary validation and phenotypic analysis in intestine. However, this study was limited in that the functional activity of glycylsarcosine (GlySar) was examined at only one concentration and pH value, and only in jejunal tissue. As a result, the objective of the current study was to define the significance and regional dependency of PEPT1 in the intestinal permeability of GlySar in wild-type and Pept1 knockout mice. Using an in situ single-pass perfusion method, radiolabeled GlySar was studied as a function of perfusate pH, dipeptide concentration, potential inhibitors, and regional segment (i.e., duodenum, jejunum, ileum and colon). The intestinal expression of PEPT1 mRNA and protein was also evaluated in these segments.
Materials and Methods

Animals. Mouse studies were carried out in accordance with the Guide for the Care and Use of Laboratory Animals as adopted and promulgated by the U.S National Institutes of Health. Gender-matched 8-10 week old Pept1+/+ (wild-type) and Pept1−/− (knockout) mice were used for all experiments. The mice were kept in a temperature-controlled environment with 12-hr light and 12-hr dark cycles, and received a standard diet and water ad libitum (Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI).

Chemicals. [3H]GlySar (0.5 Ci/mmol) was purchased from Moravek Biochemicals and Radiochemicals (Brea, CA) and [14C]PEG-4000 (1.5 mCi/g) was purchased from American Radiolabeled Compounds (St. Louis, MO). Unlabelled PEG-4000 was obtained from Mallinckrodt Baker, Inc (Phillipsburg, NJ). Acyclovir and valacyclovir were generous gifts of GlaxoSmithKline (Research Triangle Park, NC). All other chemicals were acquired from Sigma-Aldrich (St. Louis, MO).

In Situ Single-Pass Intestinal Perfusion. Intestinal perfusion experiments were performed on wild-type and Pept1 knockout mice according to methods described previously (Adachi et al., 2003; Hu et al., 2008). In brief, animals were fasted overnight with free access to water prior to each experiment. Following anesthesia with sodium pentobarbital (40-60 mg/kg i.p.), surgery was performed on each animal while lying on top of a heating pad to maintain the body temperature. Isopropyl alcohol was used to sterilize the abdominal area and a 1.5 cm midline incision was made longitudinally to expose the small intestine. An 8-cm segment of proximal jejunum was isolated (i.e., ~ 2 cm distal to the ligament of Treitz), and incisions were then made at the proximal and distal ends. Glass cannulas (2.0 mm outer diameter), attached to Tygon® tubing, were inserted at each end of the jejunal segment and secured in place with silk
sutures. Following cannulations, the isolated intestinal segment was covered with saline-wetted gauze and parafilm to prevent dehydration of the tissue. The animals were then transferred to a temperature-controlled Plexiglas perfusion chamber (31°C) to maintain body temperature during the perfusion experiment. The inlet tubing was connected to a 10-ml syringe placed on a perfusion pump (Harvard Apparatus, Model 22, South Natick, MA) and the outlet tubing was placed in a collection vial.

The perfusate (pH 6.5) contained 10 mM MES, 135 mM NaCl, 5 mM KCl, 10 µM [3H]GlySar, and 0.01% (w/v) [14C]PEG-4000, in the absence and presence of potential inhibitors, which flowed through the proximal jejunal segment at a rate of 0.1 ml/min. Exiting perfusate was collected every 10 min for 90 min. A 100-µL aliquot of perfusate was added to 5.5 ml of scintillation cocktail (Ecolite, MP Biomedicals, Solon, OH), and the samples analyzed with a dual-channel liquid scintillation counter (Beckman LS 6000 SC; Beckman Coulter Inc., Fullerton, CA). [3H]GlySar, a hydrolysis-resistant dipeptide, was added perfusate as a model substrate and [14C]PEG-4000 was added to perfusate as a non-absorbable marker to measure water flux. For pH-dependent analyses, different combinations of 10 mM MES/Tris or HEPES/Tris were used in perfusate to adjust pH values between 5.0 and 7.4, with osmolarity being held constant.

Regional Intestinal Permeability. Simultaneous perfusions, as described previously in rats (Jeong et al., 2004), were adapted for our studies in wild-type and Pept1 knockout mice. Prior to cannulations of different intestinal segments, the common bile duct was ligated by silk suture. A 2-cm segment of duodenum (i.e., ~ 0.25 cm distal to the pyloric sphincter), 8-cm segment of jejunum (i.e., ~ 2 cm distal to the ligament of Treitz), 6-cm segment of ileum (i.e., ~
1 cm proximal to the cecum) and 3-cm segment of colon (i.e., ~ 0.5 cm distal to the cecum) were then perfused as described above for jejunum alone.

Taqman Real-Time PCR Analyses. Quantification of PEPT1 transcripts were carried out in different segments of small and large intestine from wild-type mice using the 7300 Real-Time PCR System (Applied Biosystems, Foster City, CA) (Hu et al., 2008). The total RNA was isolated using an RNeasy Plus Mini Kit (Qiagen, Valencia, CA) and then reverse-transcribed. Primers and probes were designed with Primer Express 3.0 software (Applied Biosystems, Foster City, CA), and all the primers, probes, and standard DNA were synthesized by Integrated DNA Technologies (Coralville, IA). The forward and reverse primers and probe for PEPT1 were CTTGGAGCCACCACAATGG, ACAGAATTCAATGACCAGATGA and 5’/-56-FAM/- TTGCTTCGGTTACCCGTTGAGCATCT-/36-TAMSp/-3’, respectively. The forward and reverse primers and probe for GAPDH were GAGACAGCCGCATCTTCTTGT, CACACCGACCTTCACCATTTT and 5’/-56-JOE/-CAGTGCCAGCCTCGTCCCGTAGA/-36-TAMSp/-3’, respectively. The thermal profile was 1 cycle at 50°C for 2 min, 1 cycle at 95°C for 10 min, 40 cycles at 95°C for 15 sec and 60°C for 1 min. The absolute amount of PEPT1 transcripts was calculated automatically based on the standard curve, and then normalized by GAPDH transcript expression.

Immunoblot Analyses. Mucosa was scraped off the different segments of small and large intestine from wild-type mice and homogenized in 2 ml of NP-40-lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 1% NP-40, Proteinase Inhibitor cocktail, pH 8.0). The homogenate was then centrifuged at 15,000 g for 5 min at 4°C and the suspension sonicated for 10 pulses at one-half strength, followed by a second centrifugation at 15,000 g for 5 min at 4°C. The final protein concentration was measured with BCA Protein Assay kit (Pierce, Rockford, IL). The
proteins were denatured at 40°C for 45 min, separated by 7.5% SDS-PAGE gel electrophoresis, transferred to a PVDF membrane (Millipore, Billerica, MA), and then blotted for one hr with rabbit anti-mouse PEPT1 antisera (raised against the COOH-terminal region, KGIGKENPYSSLEPVSQTNM, amino acids 690 to 709; Lampire Biological Laboratories, Inc, Pipersville, PA) (1:3000) (Hu et al., 2008). The membrane was washed three times with TBS-T and then incubated with a secondary antibody, goat anti-rabbit IgG conjugated to horseradish peroxidase (HRP) (Bio-Rad, Hercules, CA) (1:1000) for one hr. For β-actin, the membrane was blotted with a mouse monoclonal antibody (Santa Cruz Biotechnology, Santa Cruz, CA) (1:1000) followed by the secondary antibody, goat anti-mouse IgG conjugated to HRP (Santa Cruz Biotechnology, Santa Cruz, CA) (1:1000). The membranes were then washed five times with TBS-T buffer, and bound antibody was detected with Immobilon Western Chemiluminescent HRP Substrate (Millipore, Billerica, MA).

Data Analysis. The effective permeability (P_{eff}) was determined from the steady-state loss of drug from the perfusate as it flows through the intestine according to a complete radial mixing (parallel tube) model (Komiya et al., 1980; Kou et al., 1991).

$$P_{eff} = \frac{-Q \cdot \ln(C_{out}/C_{in})}{2 \pi R L}$$

(1)

In equation (1), Q is the perfusate flow rate, R is the intestinal radius (0.1 cm), L is the length of intestine, C_{in} is the inlet drug concentration, and C_{out} is the outlet drug concentration (corrected for water flux). Preliminary studies indicated that [3H]GlySar was stable in outlet perfusate samples, as determined by high-performance liquid chromatography with radiochemical detection (Ocheltree et al., 2005), thereby alleviating the need for additional corrections to C_{out}.
In our studies, steady-state was reached at 20-30 min after the start of perfusion. The steady-state flux (J) across the intestinal membrane was then used to determine the kinetic parameters (V_{max}' and K_m') when referenced to inlet drug concentrations (C_{in}) as shown in equation (2).

$$ J = \frac{V_{max}' \cdot C_{in}}{K_m' + C_{in}} $$

Parameter estimates (V_{max} and K_m) were also determined after factoring out the resistance across the unstirred water layer (i.e., using a modified boundary layer analysis) (Johnson and Amidon, 1988), and the steady-state flux (J) was referenced to intestinal wall concentrations (C_w) as shown in equation (3).

$$ J = \frac{V_{max} \cdot C_w}{K_m + C_w} $$

The relationship between intestinal wall and inlet drug concentrations is shown in equation (4) where P_{aq} is the unstirred aqueous layer permeability.

$$ C_w = C_{in} \left(1 - \frac{P_{eff}}{P_{aq}}\right) $$

The unstirred aqueous layer permeability was determined according to equations (5) and (6),

$$ P_{aq} = \left(\frac{A}{D} \frac{R}{Gz^{1/3}}\right)^{-1} $$
where D is the aqueous diffusion coefficient (6.60×10^{-4} cm2/min), calculated according to the Hayduk-Laudie expression (Reid et al., 1977), Gz is the Graetz number (0.0829), and A is a unitless constant (1.332) estimated by $A = 2.5 \cdot Gz + 1.125$.

The flux equations (2) and (3) were modeled using a single saturable process (i.e., Michaelis-Menten) where V_{max}' (or V_{max}) is the maximal flux and K_{m}' (or K_m) is the Michaelis constant. The unknown kinetic parameters were then estimated by nonlinear regression. Other models, such as a single saturable process plus linear term and two saturable processes, were evaluated but did not improve the fit.

Statistical Analysis. Data were reported as mean ± SE. A two-tailed student t-test was used to compare statistical differences between two groups. For multiple comparisons, one-way analysis of variance was used followed by Dunnett’s test for pairwise comparisons with the control group (GraphPad Prism, v4.0; GraphPad Software, Inc., La Jolla, CA). A probability of $p \leq 0.05$ was considered significant. Nonlinear regression analyses were performed using GraphPad Prism software, where the quality of fit was determined by evaluating the coefficient of determination (r^2), the standard error of parameter estimates, and by visual inspection of the residuals.
Results

pH-Dependent Studies. The effective permeability of 10 µM [³H]GlySar was evaluated at various pH values in order to examine the proton-dependent jejunal uptake of GlySar by PEPT1. As demonstrated in Fig. 1A, there was a minor but statistically significant influence of pH on GlySar permeability in wild-type mice, with the optimal uptake being at pH 5.5. To further examine this relationship, increasing concentrations of dimethylamiloride (DMA), a Na⁺/H⁺ exchange inhibitor (Arakawa and Hara, 1999; Mirossay et al., 1999), were added to perfusate containing GlySar to disrupt the naturally-occurring proton gradient. As observed in Fig. 1B, DMA decreased the jejunal permeability of GlySar in wild-type mice in a dose-dependent manner. In contrast, pH had no effect on GlySar permeability in Pept1 knockout mice as compared to wild-type animals (Fig. 1C). These results demonstrate that the proton-coupled transport of GlySar by jejunal PEPT1 is stimulated in an acidic environment.

Concentration-Dependent Studies. To determine the saturability of PEPT1 in jejunum, the uptake of [³H]GlySar was evaluated at various concentrations of dipeptide (i.e., 0.01-200 mM total substrate in perfusate) in wild-type mice. As observed in Fig. 2A, GlySar exhibited a nonlinear flux that could be described by Michaelis-Menten kinetics, where Vmax′ = 4.4 ± 0.2 nmol/cm²/s and Km′ = 19.8 ± 3.3 mM (r²=0.921). When intestinal wall concentrations were used as a reference (i.e., adjusting for the unstirred water layer), the intrinsic absorption parameters were estimated as Vmax = 4.0 ± 0.2 nmol/cm²/s and Km = 5.7 ± 1.1 mM (r²=0.916) (Fig. 2B). These results demonstrate that GlySar was transported in a low affinity manner, reflective of that for PEPT1.

Inhibition Studies. Specificity of the peptide-mediated uptake of 10 µM [³H]GlySar was examined in mice by adding a wide range of potential inhibitors to the perfusate during
jejunal perfusions. As depicted in Fig. 3A, GlySar permeability was significantly reduced in wild-type mice by several dipeptides (GlySar, GlyPro and carnosine), the ACE inhibitor captopril, the α-amino-containing cephalosporin cefadroxil, and the antiviral prodrug valacyclovir. In contrast, the single amino acid glycine and histidine, the α-amino-lacking cephalosporin cephazolin, and the active antiviral drug acyclovir had no effect. Likewise, carnosine and cefadroxil had no effect on the jejunal permeability of GlySar in Pept1 knockout mice (Fig. 3B). Absence of GlySar inhibition by histidine, a known substrate for peptide/histidine transporters, suggested that PHT1/PHT2 were not involved in the intestinal permeability of this dipeptide.

Regional Dependency for PEPT1 Activity. To assess whether or not differences existed in the functional activity of PEPT1 along the intestine, GlySar permeability was evaluated in the small and large intestines of wild-type and Pept1 knockout mice. As shown in Fig. 4, GlySar permeabilities were substantially lower in the duodenum, jejunum and ileum of Pept1 knockout mice as compared to wild-type animals. In contrast, GlySar permeability was comparable between genotypes in mouse colon, and not any different between the intestinal segments of Pept1 knockout mice. When GlySar permeabilities were compared among the intestinal segments of wild-type mice, dipeptide permeabilities were comparable in duodenum and jejunum whereas ileal permeability was ~ 54% of that in jejunal or duodenal segments. The permeability of GlySar in colon was only 6% of that observed in the jejunal or duodenum.

Specificity of PEPT1 was also evaluated in various segments of the intestine. As demonstrated in Fig. 5, co-perfusion of GlyPro or cefadroxil substantially decreased the permeability of GlySar in duodenum (by 52% for cefadroxil [p>0.05] and 68% for GlyPro), jejunum (by 72% for cefadroxil and 78% for GlyPro) and ileum (by 58% for cefadroxil and 89%
for GlyPro), but not in colon. However, in the presence of histidine, GlySar permeability was unaltered in any of the intestinal segments, demonstrating that PHT1/PHT2 was not involved in dipeptide uptake.

Regional Dependency for PEPT1 Expression. The functional activity of intestinal PEPT1 was confirmed by real-time PCR and immunoblot analyses. As shown in Fig. 6, the highest expression of PEPT1 transcripts was found in the jejunum followed by ileum, distal colon, duodenum and proximal colon. When evaluated at the protein level (Fig. 7), the strongest staining of PEPT1 was found in jejunum followed by duodenum = ileum. No PEPT1 protein was detected in the colon. It is interesting to note that while PEPT1 transcripts were found in distal colon, it did not translate to PEPT1 protein expression in this segment.
Discussion

The recent generation of Pept1 knockout mice has provided a unique opportunity to probe the functional activity of PEPT1 under physiological conditions (Hu et al., 2008). Although these authors examined the in situ permeability of GlySar from intestine, their phenotypic analysis was more preliminary in nature. In particular, they only evaluated GlySar at a single concentration and pH value, and permeability was evaluated in jejunal tissue alone as was PEPT1 protein. Other intestinal regions of the mice were neither examined for PEPT1 functional activity nor protein expression. Because of these limitations, we combined in situ permeability studies of GlySar and immunoblot analyses in order to compare dipeptide transport with PEPT1 protein expression in specific regions of the small intestine and colon.

In this study, we report several new findings regarding the in situ transport properties of GlySar in wild-type versus Pept1 knockout mice, and further validate these mice as a model to explore PEPT1 physiology and pharmacology. Specifically, we found that: 1) jejunal permeability of GlySar was saturable in wild-type mice with a low affinity $K_m = 5.7$ mM, 2) GlySar permeability was specific for PEPT1, 3) functional activity of PEPT1 was highest in wild-type duodenum ≈ jejunum > ileum with abundant protein expression in these same intestinal regions, 4) PEPT1 was not functionally active in the colon which is consistent with its lack of protein expression in wild-type proximal or distal colon, 5) GlySar permeabilities were not different among the intestinal segments of Pept1 null mice, and 6) residual uptake of GlySar was less than 10% in duodenum (or jejunum) when comparing Pept1 null to wild-type animals. Taken as a whole, our studies show that PEPT1 has substantial activity along the entire length of mouse small intestine (but not colon), and that dipeptide permeability agrees with the expression levels of PEPT1 protein in these regions.
The pH-dependent transport activity of PEPT1 has been demonstrated in a variety of \textit{in vitro} models including rabbit intestinal brush border membrane vesicles (Ganapathy and Leibach, 1983; Ganapathy et al., 1984; Inui et al., 1988), Xenopus oocytes expressing rabbit (Fei et al., 1994), rat (Saito et al., 1995), human (Liang et al., 1995) and mouse (Fei et al., 2000) PEPT1, and cultured Caco-2 cells (Matsumoto et al., 1994; Terada et al., 1999). As shown in these studies, and when stably transfected in Chinese hamster ovary cells (Fujisawa et al., 2006), PEPT1 transport activity \textit{versus} medium pH displayed a bell-shaped curve with an uptake maximum at pH 5.5 - 6.0. In our \textit{in situ} studies, GlySar permeability was significantly greater at pH 5.5 (see Fig. 1A). However, the difference (about 36\%) was not as remarkable as typically observed in other \textit{in vitro} models. This is most likely due to fact that changes in luminal bulk pH do not translate into similar changes in pH at the membrane surface of intact animals where the “acid-microclimate” is maintained during \textit{in situ} or \textit{in vivo} conditions (Lucas 1983). As shown by Högerle and Winne (1983), the microclimate jejunal pH varied from only 6.0 to 6.5 at the membrane surface even when the luminal bulk pH was raised from 5.0 to 7.4. Still, the pH dependence of PEPT1 activity was confirmed by our studies with DMA (see Fig. 1B), which presumably interfered with the ability of NHE3 (Na+/H+ exchanger 3) to acidify the luminal microclimate (Brandsch et al., 2008; Rubio-Aliaga and Daniel, 2008), thereby reducing the intestinal permeability of GlySar.

Human and mouse PEPT1 share many similarities, suggesting that our findings in mice should be relevant in predicting PEPT1-mediated processes in humans. At the molecular level, PEPT1 is highly homologous across species, having an amino acid identity of 83\% between human (Liang et al., 1995) and mouse (Fei et al., 2000). The genomic organization of human PEPT1 also shows high similarity with its mouse ortholog (Urtti et al., 2001). Functionally, as
demonstrated in Xenopus oocytes or cell cultures, the transport properties of human and mouse PEPT1 are similar with respect to driving forces (i.e., stimulated by proton gradient and inside-negative membrane potential), substrate specificity and substrate affinity (Liang et al., 1995; Fei et al., 2000). In regard to expression, PEPT1 is found in the small intestine and kidney of both species (Liang et al., 1995; Liu et al., 1995; Fei et al., 2000; Shen et al., 2003; Hu et al., 2008). Immunolocalization studies further place PEPT1 at the apical membrane of small intestine (i.e., duodenum, jejunum and ileum) with little or no expression in the colon of human and mouse (Walker et al., 1998; Groneberg et al., 2001; Ford et al., 2003). Finally, gene expression studies show that both species have comparative intestinal expression patterns and levels, unlike that of the rat (Rubio-Aliaga and Daniel, 2008; Kim et al., 2007).

PEPT1 is a low-affinity, high-capacity transporter with apparent affinities (Km values) ranging from 0.2 mM to 10 mM, depending upon the substrate, species, tissue cell types, and experimental conditions such as buffer pH (Rubio-Aliaga and Daniel, 2002; Brandsch et al., 2008). The apparent affinity constants of GlySar are in the medium range of substrates with Km values of approximately 0.5 mM to 1.5 mM. Under our conditions of study (i.e., in situ single-pass jejunal perfusion in mice), the intrinsic Km of GlySar was estimated at 5.7 mM. This value is similar to other PEPT1 substrates, namely cefadroxil, cephalexin, and cephradine where the intrinsic Km values were 5.9 mM, 7.2 mM, and 1.5 mM, respectively, using an in situ single-pass jejunal perfusion technique in rats (Sinko and Amidon, 1988). In both studies (this study and that of Sinko and Amidon, 1988), these Km values are “unbiased” membrane parameters that have already factored out resistance across the unstirred aqueous boundary layer. In contrast, the Km of GlySar in mouse PEPT1 cRNA-injected Xenopus oocytes was about 0.7 mM at -50 mV (Fei et al., 2000). The apparent discrepancy between the two GlySar studies probably
reflects differences in experimental design in which one study used an in vitro model (i.e., Xenopus oocytes) lacking in both blood flow and luminal residence times, while another study (this one) used a more physiologically-based in situ intestinal perfusion model in mice.

Digestion of proteins in the intestinal lumen may yield di/tripeptide concentrations as high as 100 mM (Ganapathy et al., 2006). Thus, having a low-affinity, high-capacity transporter such as PEPT1 in this region makes physiological sense. As observed in the current study, having a greater PEPT1 activity in the duodenum and jejunum over ileum is also physiologically sound since this POT protein has a reciprocal relationship with both peptidases and amino acid transporters along the small intestine. As the luminal contents move from the proximal to distal small intestine, the concentrations of di/tripeptides gradually decrease and the concentrations of free amino acids gradually increase, thereby, enhancing the efficiency of nutritive absorption.

Previous in vitro studies have shown that human PEPT1, in addition to recognizing di/tripeptides, also recognizes peptidomimetic therapeutic agents such as captopril, aminoccephalosporin antibiotics, and the antiviral prodrug valacyclovir (Brandsch et al., 2008; Rubio-Aliaga and Daniel, 2008). Our findings, using an in situ mouse intestinal perfusion model, were consistent with those studies regarding PEPT1’s substrate specificities. It is important to note that histidine, a known PHT1/PHT2 substrate, did not inhibit the permeability of GlySar in duodenal, jejunal, ileal or colonic segments. This finding demonstrates that, despite their presence, the peptide/histidine transporters do not contribute to GlySar’s uptake from the small and large intestines. It has already been confirmed that in Pept1 null nice, other intestinal POT transporters, such as PEPT2, PHT1 and PHT2, do not exhibit a compensatory upregulation in response to Pept1 gene deletion (Hu et al., 2008).
In conclusion, our study provides the first comprehensive evaluation of the role, relevance, and regional dependency of PEPT1 expression and function in mouse intestines. The results demonstrate that PEPT1 protein is abundantly expressed along the entire length of small intestine with no expression in colon. The expression levels are corroborated by substantial PEPT1 activity in these same intestinal regions, as judged by GlySar permeability estimates during in situ single-pass perfusions. In comparing wild-type and Pept1 knockout mice, it is clear that PEPT1 deficiency (e.g., a loss of activity due to polymorphisms, disease or drug interactions) should have a major effect in reducing the intestinal absorption di/tripeptides, peptidomimetics, and peptide-like drugs. Further studies with clinically relevant drugs (and prodrugs) are warranted and currently underway.
Acknowledgments. This work was supported by the National Institutes of Health National Institute of General Medical Sciences [Grant R01 GM035498 to DES].
References

LEGENDS FOR FIGURES

Figure 1. Effect of pH (panel A) and dimethylamiloride (DMA in pH 6.5 buffer) (panel B) on the permeability (P_{eff}) of 10 µM $[^3]$H GlySar during jejunal perfusions of wild-type mice, *$p \leq 0.05$ as compared to pH 7.4 (A) or control values (B); effect of pH on the permeability (expressed as C_{out}/C_{in}) of 10 µM $[^3]$H GlySar during jejunal perfusions of wild-type (+/+) and Pept1 knockout (−/−) mice (panel C). Data are expressed as mean ± SE (n=4).

Figure 2. Concentration-dependent flux of $[^3]$H GlySar (0.01-20 mM total substrate) during jejunal perfusions of wild-type mice. Studies were performed in pH 6.5 perfusion buffer. Data are expressed as mean ± SE (n=4). C_{in} represents the perfusate concentration of GlySar (panel A) while C_w represents the mean “estimated” concentration of GlySar at the intestinal wall (panel B).

Figure 3. Effect of potential inhibitors (25 mM except where noted) on the permeability (P_{eff}) of 10 µM $[^3]$H GlySar during jejunal perfusions of wild-type (+/+) mice (panel A) or Pept1 knockout mice (−/−) (panel B). Studies were performed in pH 6.5 perfusion buffer. Data are expressed as mean ± SE (n=4). **$p \leq 0.01$ as compared to control values.
Figure 4. Permeability (P_{eff}) of 10 µM [3H]GlySar in the duodenum, jejunum, ileum, and colon of wild-type (+/+) and Pept1 knockout (-/-) mice. Studies were performed in pH 6.5 perfusion buffer. Data are expressed as mean ± SE (n=4-8). $^{##}p \leq 0.01$ and $^{###}p \leq 0.001$ as compared to both the duodenum and jejunum of wild-type mice; no differences were observed between the intestinal segments of Pept1 knockout mice. $^{**}p \leq 0.01$ and $^{***}p < 0.001$ when comparing Pept1 knockout mice and wild-type animals for a specific intestinal segment.

Figure 5. Effect of potential inhibitors (25 mM) on the permeability (P_{eff}) of 10 µM [3H]GlySar in the duodenum, jejunum, ileum, and colon of wild-type mice. Studies were performed in pH 6.5 perfusion buffer. Data are expressed as mean ± SE (n=4-8). $^{*}p \leq 0.05$ and $^{***}p \leq 0.001$ as compared to control values.

Figure 6. Real time-PCR analyses for PEPT1 transcripts in the duodenum, jejunum, ileum, and proximal and distal colon of wild-type mice. Data are expressed as mean ± SE (n=6).

Figure 7. PEPT1 protein expression in the duodenum, jejunum, ileum, and proximal and distal colon of wild-type mice. Tissue lysates from wild-type mice were subjected to 7.5% SDS-PAGE (20 µg of protein per intestinal segment).
Figure 1A
Figure 1B
Figure 1C
Figure 2A
Figure 2B

B

GlySar Flux (nmol/cm²/s)

\[C_w \text{ (mM)} \]

Figure 2B
Figure 3B
Figure 4
Figure 5
Figure 6