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Abstract 

Cryopreserved human hepatocytes suspended in human plasma (HHSHP) represent an integrated 

metabolic environment for predicting drug-drug interactions (DDIs).  In this study, 13 CYP3A 

reversible and/or time dependent inhibitors (TDI) were incubated with HHSHP for 20 min over a 

range of concentrations after which midazolam 1’-hydroxylation was used to measure CYP3A 

activity. This single incubation time method yielded IC50 values for the 13 inhibitors. For each 

CYP3A inhibitor/victim drug pair, the IC50 value was combined with total average plasma 

concentration of the inhibitor in humans, fraction of the victim drug cleared by CYP3A and 

intestinal availability of the victim drug to predict the ratio of plasma area under the curve of the 

victim drug in the presence and absence of inhibitor. Of 52 clinical DDI studies utilizing these 13 

inhibitors identified in the literature, 85% were predicted by this method within 2-fold of the 

observed change and all were predicted within 3-fold. Subsequent studies to determine 

mechanism (reversible and TDI) were performed by using a range of incubation periods and 

inhibitor concentrations.  This system differentiated between reversible inhibitors, TDIs and the 

combination of both. When the reversible and inactivation parameters were incorporated into 

predictive models, 65% of 52 clinical DDIs were predicted within 2-fold of the observed changes 

and 88% were within 3-fold. Thus HHSHP produced accurate DDI predictions with a simple IC50 

determined at a single incubation time regardless of the inhibition mechanism, further if needed, 

the mechanism(s) of inhibition can be identified. 
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Introduction 

The inhibition of cytochrome P4503A (CYP3A) enzymes at the intestine and liver is 

responsible for many clinically important drug-drug interactions (DDIs) (Gomez et al., 1995; 

Gorski et al., 1998; Galetin et al., 2008).  It is now a standard practice during drug development 

to predict the ability of candidate drugs to inhibit the cytochrome P450s, including CYP3As, 

using in vitro enzyme kinetic data generated from human liver microsomes (HLMs) (Bjornsson et 

al., 2003a; Bjornsson et al., 2003b). These in vitro CYP inhibition parameters have facilitated the 

assessment of risk and predicted the potential magnitude of DDI when combined with measures 

or predictions of human drug exposure but the approach is time consuming and has significant 

limitations. The state-of-the art prediction of an in vivo CYP-mediated, inhibitory DDI requires 

estimation of the reversible inhibition constant (Ki), the irreversible inhibition parameters (KI and 

kinact), the fraction unbound in plasma (fu,p) and the fraction unbound in the microsomal system 

(fu,mic) (Wang et al., 2004).  Sophisticated models using static or dynamic drug concentration have 

been developed to integrate this data set and predict an in vivo DDI for a given drug dosing 

regimen (Obach et al., 2006; Einolf, 2007; Fahmi et al., 2009; Xu et al., 2009; Rowland Yeo et 

al., 2010).  However, the resulting predictions often result in false positives, false negatives and 

fail to correctly categorize inhibitors as weak, moderate and strong in vivo inhibitors (Xu et al., 

2009). Consequently, a consensus on the most appropriate predictive framework to be used 

during the development of a new drug candidate has not been reached.  

Cryopreserved human hepatocytes suspended in well defined serum free media have been 

used to estimate TDI parameters for diltiazem, verapamil, erythromycin, clarithromycin, and 

troleandomycin, and combined with the Simcyp population-based ADME simulator to accurately 

predict CYP3A mediated DDIs (Xu et al., 2009). The value of this approach in predicting 

reversible inhibition was not assessed by these authors. Cryopreserved human hepatocytes 

suspended in human plasma (HHSHP) represent a convenient, integrated metabolic environment 

for estimating the extent and mechanism of human DDIs. Lu et al. (Lu et al., 2007; Lu et al., 
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2008a; Lu et al., 2008b)  have utilized the HHSHP system to quantitatively determine the 

inhibition of various P450s by ketoconazole and fluconazole. Using this information, CYP-

mediated changes in the area under the curve (AUC) of several victim drugs were predicted 

accurately for DDIs involving these two prototypical competitive inhibitors, but the applicability 

to mechanism based inhibitors (MBI) was not addressed. Compared to in vitro systems using 

HLM, human hepatocytes suspended in human plasma inherently account for several parameters: 

1) the plasma protein and microsomal binding of drug, 2) compound availability to the enzyme in 

its native environment within the cell and 3) metabolism of the compound by both CYP and 

non-CYP pathways including the potential for the formation of inhibitory metabolites.  

The primary objective of the current study using HHSHP is to quantify the ability of a 

simple, single incubation time method to assess the CYP3A inhibition by a test compound in 

order to predict clinical DDIs without the knowledge of  inhibition mechanism.  A secondary aim 

is to identify the inhibition mechanism and compare the clinical DDI prediction based on the 

appropriate mechanistic models to those from the single incubation time method. 
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Materials and Methods 
 
Materials. Cryopreserved human hepatocytes and InVitro GROTM HT Medium were obtained 

from Celsis In Vitro Technologies, Inc. (Baltimore, MD). Midazolam, 1’-hydroxymidazolam (1’ 

OH midazolam) and [13C5]-1’-hydroxymidazolam were obtained from BD Gentest (Woburn, 

MA). Conivaptan was obtained internally. Clarithromycin, diltiazem, erythromycin, fluconazole, 

itraconazole, ketoconazole, nefazodone, and troleandomycin were obtained from Sigma (St. 

Louis, MO). Aprepitant, ritonavir, saquinavir, and voriconazole were obtained from Toronto 

Research Chemicals (North York, ON, Canada).  Human plasma (Na-heparin) was obtained from 

Lampire Biological Laboratories, Inc. (Pipersville, PA). Hepatocyte Maintenance Medium 

(HMM) was obtained from Lonza, Inc. (Walkersville, MD).  

Hepatocyte studies.   Hepatocytes (pool of five individuals) were thawed in InVitro GROTM HT 

Medium (25 ml per 5 million hepatocytes) and centrifuged at 50g at room temperature for 5 min.  

The cell pellet was reconstituted in HMM, and cell viability was found to be at least 80% using a 

Vi-Cell XR cell viability analyzer (Beckman Coulter Inc., Brea, CA).  After the cell viability was 

determined, hepatocytes were centrifuged at 50g at room temperature for 5 min and resuspended 

in human plasma (2x106 cells/ml). The cell suspension was incubated at 37 °C with 5% CO2 until 

the addition of putative enzyme inhibitors. 

Inhibition studies. The final inhibitor concentrations in human plasma were 0.13-100 µM for 

aprepitant, fluconazole, voriconazole, clarithromycin, conivaptan, diltiazem, erythromycin, 

itraconazole, nefazodone and troleandomycin, 0.03-20 µM for ketoconazole and ritonavir, and 

0.07 to 50 µM for saquinavir. The final organic vehicle concentration was 0.5% methanol. The 

incubations were performed in triplicate.  Stock hepatocyte suspension (25 µl) was added to 50 µl 

of inhibitor-containing plasma such that the final concentration of hepatocytes was 0.5×106 

cells/ml in human plasma and incubated for 20 min. (37 °C, 5% CO2) before the addition of 

midazolam. To assess the effect of incubation time, cells were incubated with inhibitors for 0, 10, 

and 20 min. prior to the addition of midazolam. Midazolam (25 µl in human plasma; final 
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concentration = 30 µM) was added to the cell suspension, and a further 35 min of incubation was 

used to quantify the remaining CYP3A activity. The reactions were terminated by adding 200 µl 

of acetonitrile/methanol (3:1 v/v) containing 150 nM [13C5] -1’-OH midazolam as an internal 

standard.  Samples were centrifuged at 4000 rpm for 20 min and an aliquot of the supernatant was 

analyzed by LC-MS/MS. Preliminary experiments demonstrated that these incubation conditions 

resulted in linear formation of 1’-hydroxymidazolam with respect to the incubation time and the 

hepatocyte concentration. The formation of 1’-hydroxymidazolam was linear for 80 minutes. 

Liquid chromatography/tandem mass spectrometry methods. Quantification of 1’-OH midazolam 

was achieved using HPLC (Shimadzu LC10) interfaced to a triple quadrapole mass spectrometer 

(Sciex API 4000, Applied Biosystems, Foster City, CA). Chromatographic separation was 

achieved using a reverse phase column (Synergi Hydro-RP 4 µm column, 100 × 2 mm, 

Phenomenex, Torrance, CA) with a gradient consisting of 5% methanol in 5 mM ammonium 

acetate (mobile phase A) and 95% methanol in 5 mM ammonium acetate (mobile phase B) at a 

flow rate of 0.4 mL/min with a 25 µl injection volume. Specifically, 70% of mobile phase B was 

increased linearly to 80% from 0 to 2 min, and increased to 100% in the next 0.05 min. Mobile 

phase B was held at 100% from 2.05 to 2.30 min, and the column was re-equilibrated to 70% B. 

The electrospray ionization probe was run in the positive ion mode with probe temperature of 600 

°C.  The m/z transition of 1’-OH midazolam and [13C5]-1’-OH midazolam were 342 →324 and 

347 →329, respectively. The lower and upper limits of quantification were 0.5 and 234 pmol 1’-

OH midazolam, respectively, per 100 µL well incubation. The interday accuracy ranged from -

4.97% to 10.26%, and the intraday accuracy ranged from -6.13% to 11.09%. The interday 

precision ranged from 2.47% to 8.15%, and the intraday precision ranged from 1.70% to 13.15%. 

Data analysis. 

Inhibition data.  The relationship between CYP3A activity at a given time and inhibitor 

concentration relative to baseline CYP3A activity was used to determine an IC50.  All data were 
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analyzed using the average of triplicate determinations. IC50 values were calculated by the model 

(Eq. 1) by weighted nonlinear regression (WinNonlin 5.0, Pharsight Corp, Mountain View, CA).   

                                                                                                                                 (Eq. 1) 

 

Where X is the nominal concentration of an inhibitor; Y represents the percentage of baseline 

CYP3A activity remaining; a is the estimated response at zero concentration of inhibitor; γ is the 

slope factor, describes the steepness of the curve.   

Three inhibition models incorporating irreversible (Model B), reversible (Model C), or 

both (Model A), were employed to estimate the inactivation parameters (KI and kinact) and/or 

reversible inhibition constant (Ki) for each inhibitor when three IC50 curves obtained from 

different incubation times were simultaneously fitted using weighted nonlinear regression. The 

most appropriate model was chosen using the following goodness of fit criteria: visual inspection, 

randomness of the residuals, and the standard error of the parameter estimates. 

 

Model A:                                                                                                                 (Eq. 2) 

 

Model B:                                                                                                                 (Eq. 3) 

 

Model C:                                                                                                                 (Eq. 4) 

 

In Eq. 2-4, t is the time during which the inhibitors are in contact with human hepatocytes 

prior to the addition of midazolam (0, 10 or 20 min). V35+t, [I] represents the formation rate of 1’-

OH midazolam at a given concentration of the inhibitor and total time (total time = 35 min with 

midazolam plus t min without midazolam), and V35+t, [0] is the formation rate of 1’-OH midazolam 

for the corresponding vehicle control (no inhibitor) at the same incubation time. The ratio of V35+t, 

[I] and V35+t, [0] normalizes the baseline for the enzyme activity for the specific incubation time.  Km 
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is the Michaelis-Menten constant for 1’-OH midazolam formation in HHSHP (45 µM, based on 

total and not unbound midazolam concentration, data not shown), and [S] is midazolam 

concentration (30 µM). Vmax, 35 +t   represents maximum rate of 1’-OH midazolam formation at 

some total time.  The rate of 1’-OH midazolam formation varied with incubation time and 

consequently the ratio of Vmax, 35 +t   and V35+t, [0] was estimated by Models A-C (Eq. 2-4).  [I] is the 

nominal inhibitor concentration, assuming no inhibitor depletion during the incubation. KI is the 

inhibitor concentration required for the half maximal inactivation, kinact is the maximum 

inactivation rate constant, and Ki is the reversible inhibition equilibrium constant.  

All raw data were fitted to Model A. If the parameters Ki , kinact and KI with less CV% 

were estimated by Model A from the simultaneous fitting three sets of data corresponding to the 

ratio of 1’-OH midazolam formation rate versus inhibitor concentrations using weighted 

nonlinear regression, it suggested that the compound is a reversible and time dependent inhibitor. 

For compounds which Model A was able to estimate the inactivation parameters (KI and kinact) but 

not the reversible inhibition constant Ki, the raw data were fitted to Model B which only estimates 

the inactivation parameters (KI and kinact). For compounds which Model A was able to estimate 

the reversible inhibition constant Ki but not the inactivation parameters (KI and kinact), the raw data 

were fitted to Model C which only estimates the reversible inhibition constant Ki. 

Predictions of drug-drug interactions.   

The single incubation time method A generic model (Eq. 5) of enzyme inhibition was used to 

predict a potential increase in exposure to a drug as a result of the inhibition of hepatic and 

intestinal CYP3A (Ito et al., 1998; Wang et al., 2004; Obach et al., 2006). All assays were 

performed at a substrate concentration close to the Km of midazolam (data not shown). The 

inhibition mechanism may be unknown for some inhibitors nevertheless the assumption that Ki, 

app= IC50/2 was applied (Obach et al., 2007).  For competitive inhibitors, the Ki, app would be 

equivalent to the inhibition constant Ki.  In the case of TDIs that display mechanism based 

inhibition, Ki, app would be equivalent to KI × kdeg /kinact when [I] << KI  (Wang et al., 2004).  
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                                                                                                                                                 (Eq. 5) 

 

Where AUC p.o.,i/AUC p.o is the predicted ratio of in vivo exposure of a CYP3A-cleared drug with 

oral coadministration of the inhibitor versus that in control state, fm, CYP3A is the fraction of total 

clearance of the affected drug to which CYP3A contributes, Fg is the fraction of the dose of the 

affected drug that passes through the intestine unchanged after p.o. administration in the control 

state.  

The fraction of object drug metabolized by CYP3A (fm,CYP3A) was assumed to be the same 

as that observed previously for midazolam, sildenafil, fentanyl, triazolam, zolpidem, alprazolam 

and trazadone (0.93, 0.79, 0.5, 0.8, 0.6, 0.8, and 0.35, respectively) (Obach et al., 2006). The 

fraction of drug metabolized by CYP3A in the intestine was assumed to be 1, and the Fg values 

for midazolam, sildenafil, triazolam, alprazolam and trazadone were assumed to be 0.57, 0.38, 

0.44, 0.88 and 0.75 respectively, as described previously (Ernest et al., 2005; Obach et al., 2006).  

[I] is collected from three main sources (details in the Supplemental Table 1). The average 

systemic plasma concentration of the inhibitor (plasma concentration area under curve from 0 to 

the dosing interval (AUC0-τ) divided by the dosing interval) observed or calculated in the primary 

literature was preferred. In some cases this was not available and then the plasma inhibitor 

concentration at a certain time point (eg. when the victim drug was administered) reported in the 

primary literature was employed. If the inhibitor concentration was not reported in the primary 

literature, values were obtained from secondary literature sources (Einolf, 2007; Fahmi et al., 

2008; Fahmi et al., 2009). These values were previously derived from other literature in which 

similar dosing regimens were employed for individual inhibitors. The IC50 values are based on 

total inhibitor concentration in plasma and consequently there is no need to use unbound 
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plasma concentrations in the predictions. For the prediction of intestinal inhibition, Ki,app 

values were converted to unbound values (Ki,app  × fu) consistent with the assumption of no 

significant protein binding in the gut lumen. The fraction unbound in human plasma for each 

compound was taken from Goodman & Gilman (Hardman et al., 2001).  

The concentration of the inhibitor in the enterocyte during absorption ([I]g) was estimated 

based on the assumption that 1) no significant protein binding in the gut lumen and 2) 

inhibitors not subject to any first pass metabolism (Rostami-Hodjegan A, 2004; Galetin et al., 

2008): 

                                                 MWQ

Fk

×
××=

ent 

aa

g

D
[I]                                            (Eq. 6)                                

In which D is the dose of the inhibitor (mg), ka is the oral absorption rate constant of the inhibitor, 

Fa is the fraction of the inhibitor absorbed into the gut wall from the intestinal lumen following 

oral administration, Qent represents the blood flow to the enterocyte, and MW is the molecular 

weight.  For ka and Qent values of 0.03 min-1 and 248 ml/min were used, respectively  (Obach et 

al., 2006). An Fa value of 1 was used for all drugs (Einolf, 2007). 

In the current investigation, there were 12 clinical studies in which victim drugs were 

given intravenously. Among these 12 studies, midazolam was the victim drug in eleven clinical 

studies and the inhibitors were ketoconazole, aprepitant, conivaptan, voriconazole, 

troleandomycin, erythromycin, clarithromycin, diltiazem and saquinavir. In the other clinical 

study, fentanyl was the victim drug and ritonavir was the inhibitor.  For these 12 studies, the AUC 

ratio was predicted using Eq. 7, in which the hepatic extraction ratio (EH) of the victim drug is 

accounted for in the DDI prediction (Kirby and Unadkat, 2010). Midazolam was assignedan EH 

of 0.4 (mean value calculated from the eleven clinical studies) and fenatanyl was assigned a value 

of 0.7 (Olkkola et al., 1999). 
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The mechanistic method According to the inhibition mechanism, the magnitude of DDIs 

involving each inhibitor was predicted using the appropriate models. 

For drugs identified as reversible inhibitors, AUC ratios were calculated by Eq. 5, where 

Ki,app was equal to the Ki estimated by Model C.  

For drugs identified as TDIs with Model B, AUC ratios were calculated using the 

following equation (Mayhew et al., 2000; Wang et al., 2004).  

 

  

 

 

                                                                                                                              ( Eq. 8) 

where kdeg is the first-order rate constant of in vivo degradation of the affected enzyme. The 

values of  kdeg used for intestinal (kdeg,CYP3A,g ) and hepatic CYP3A (kdeg,CYP3A,h ) were 0.000481 ( 

t1/2 = 24 h ) and 0.000321 min -1 ( t1/2 = 36 h ), respectively (Wang et al., 2004; Obach et al., 2007; 

Quinney et al., 2010; Wang, 2010).  For the 12 clinical studies involving IV administration of the 

victim drug, the AUC ratio was predicted using Eq. 9 (Kirby and Unadkat, 2010). 

 

                                                                                                                                                 (Eq. 9) 

 

 

 

For drugs identified as reversible and time dependent inhibitors with Model A, the AUC ratio was 

calculated using Eq. 9 (Fahmi et al., 2008). For the ritonavir and IV fentanyl DDI, the AUC ratio 

was predicted using Eq. 11 (Kirby and Unadkat, 2010). 
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                                                                                                                             ( Eq. 10) 

 

                                                                                                                                  (Eq. 11) 

 

 

Data source.  Data from fifty two clinical DDI studies were collected from the literature after 

having been identified by the University of Washington Metabolism and Transport Drug 

Interaction Database (http://www.druginterationinfo.org/). Forty six clinical DDI studies involved 

the inhibition of midazolam metabolism, 5 studies involved the inhibition of alprazolam, fentanyl, 

sildenafil, trazadone and triazolam metabolism by ritonavir; 1 study involved the inhibition of 

sildenafil by saquinavir. The database was accessed on 01/29/2009, and the data are reported in 

Table 3. 

Data analysis. Among 52 clinical DDIs, there are 22 strong interactions (AUC ratio > 5), 26 

moderate interactions (2 ≤ AUC ratio ≤ 5) and 4 weak interactions (1 ≤AUC ratio < 2). Two 

methods were employed to quantify the accuracy of predicted DDIs. One is to compare the fold 

error of predicted and observed values of AUC ratio (2-fold cut-off). Another method is called 

“categorical prediction” based on the definition of strong interactions, moderate interactions and 

weak interactions. 
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Results 

Enzyme inhibition parameter estimation 

The thirteen known CYP3A inhibitors represented reversible inhibitors (ketoconazole as 

strong reversible inhibitor and fluconazole as a moderate inhibitor) and TDIs (TAO as a strong 

TDI, diltiazem as a moderate TDI, and erythromycin as a weak TDI) that displayed a wide range 

of plasma protein binding (itraconazole and ketoconazole high protein binding, voriconazole and 

clarithromycin moderate protein binding, and fluconazole low protein binding).  These inhibitors 

were incubated with human hepatocytes suspended in human plasma for 20 min over a range of 

concentrations in the absence of midazolam and a further 35 min in the presence of midazolam 

(30 µM). The IC50 value for each inhibitor was estimated using Eq. 1 and the values are shown in 

Table 1. For ketoconazole and fluconazole, the IC50 values obtained here were similiar to those 

observed by Lu et al. using a comparable procedure (Lu et al., 2007; Lu et al., 2008a; Lu et al., 

2008b).  Based on the assumption that the nominal concentration of inhibitor is close to the 

extracellular concentration, these IC50 values represent the total (bound and unbound) 

concentration of the inhibitors that inhibit 50% of CYP3A activity and consequently there was no 

correction of fraction unbound in plasma for the IC50 values. As shown in Table 1, ritonavir was 

the most potent inhibitor with the lowest IC50 value, while aprepitant had the highest IC50 value 

among the 13 drugs studied.  In additional studies, incubation times of 0, 10 and 20 min (with 

inhibitors alone) were used to generate IC50 values (Table 1). The IC50 value at the 20 min in the 

two independent studies showed very good agreement (Table 1). 

To define the inhibition mechanism for each inhibitor, models of reversible inhibition 

(Model C), irreversible inhibition (Model B), and combined reversible and irreversible inhibition 

(Models A) were employed (Eq. 3-5). Examples of the results of the best fit of four representative 

drugs (ketoconazole, erythromycin, itraconazole and ritonavir) are shown in Fig. 1a-d, and the in 

vitro inhibition constants for each inhibitor obtained from the best model fit analyses are listed in 
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Table 2. The process of defining the inhibition mechanism took place in the following three steps. 

First, all raw data were fitted to the combined reversible plus irreversible model (Model A). The 

fit of Model A indicated that ketoconazole is a reversible inhibitor but not a TDI because Model 

A was able to estimate the reversible inhibition constant Ki but not the inactivation parameters (KI 

and kinact). This observation was also the case with fluconazole, aprepitant and voriconazole, 

which is not unexpected because these compounds are all known reversible inhibitors (Ito et al., 

1998). A second group of compounds (erythromycin, nefazodone, troleandomycin, 

clarithromycin, diltiazem, itraconazole and saquinavir) were identified as TDI only, because 

Model A was able to estimate the inactivation parameters (KI and kinact) for each with reasonable 

precision but not the reversible inhibition constant Ki. Ritonavir represents a potential third group 

of compounds as it was suggested to be a reversible and time-dependent inhibitor because both 

the reversible inhibition constant Ki and the inactivation parameters (KI and kinact) were well 

estimated (Fig. 1d and Table 2).  

In the second step of assigning a mechanism, inhibitors which were initially assigned as 

TDIs only were further analyzed using the model for irreversible inhibition (Model B), which 

only estimates the inactivation parameters (KI and kinact). Better fitting of the data and more 

precise (less CV%) estimates of inactivation parameters of these inhibitors (TDI only) were 

obtained utilizing Model B (Fig. 1b-c and Table 2). For example, the fit of erythromycin to 

model A resulted in the mean estimate and the standard error of the estimates of kinact, KI  and Ki  

as 0.08 ± 0.07 min-1 (87.50 % CV), 35.09 ± 31.92 μM (90.97 % CV) and 497.65 ± 8311.13 μM 

(1670.09 % CV),  where as the results were significantly better when the data were fit to 

model B yielding the values of kinact and KI  as  0.08 ± 0.005 min-1 (6.25 % CV) and 25.15 ± 

4.90 μM (19.48 % CV), respectively. In the third step, inhibitors which were identified as purely 

reversible inhibitors in the first step were analyzed using Model C, which only estimates the 

reversible inhibition constant Ki. Better fitting of the data and more precise (less CV%) estimates 
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of Ki for these inhibitors were obtained utilizing Model C (Fig. 1a and Table 2). For example, 

the fit of ketoconazole to model A resulted in the mean estimate and the standard error of the 

estimates of kinact, KI and Ki  as 0.000003 ± 0.2 min-1 (7686821 % CV), 32.67 ± 8543863 μM 

(10845820 % CV) and 0.61 ± 0.18 μM (29.51 % CV),  where as the results were significantly 

better when the data were fit to model C yielding the value of Ki as  0.59 ± 0.09 μM (15.25 

% CV). In addition, Model C also fitted the ritonavir data well, which was not surprising as the 

compound was reported as a very potent reversible as well as a TDI in HLM (Ernest et al., 2005). 

Thus, the inhibition constants of ritonavir estimated from both models have been included in 

Table 2.   

Prediction of DDIs 

The in vitro inhibition constants for the thirteen CYP3A inhibitors studied were used to 

predict 52 clinical DDIs (Table 3) using the single incubation time method and mechanistic 

method. In these studies, for 12 of the 13 inhibitors the victim drug was midazolam; for ritonavir 

the victim drugs were sildenafil, fentanyl (intravenous), triazolam, alprazolam and trazodone; for 

saquinavir one of the victim drugs was sildenafil.  

The single incubation time method: IC50 values from a 20 min incubation with inhibitor alone  

IC50 values from a 20 min incubation time with inhibitor and a further 35 min of 

incubation with midazolam were converted to Ki,app (Ki,app=IC50 / 2) and used in Eq. 5 to predict 

the extent of DDI in vivo. The total average systemic plasma concentration of each inhibitor was 

employed as [I] because in vitro parameters were estimated relative to total plasma 

concentration there was no need for correction for the fraction unbound in plasma for [I] 

(Table 3); [I]g was calculated using Eq.6. The predicted and observed AUC ratios are listed in 

Table 3, and a plot of predicted DDIs versus observed values from clinical studies is shown in Fig 

2. The single incubation time method correctly classified DDIs in 12 out of 20 strong interactions 

(60% accuracy), 15 out of 28 moderate interactions (54% accuracy) and 4 out of 4 weak 
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interactions (100% accuracy) (Fig. 2). Using the criteria of within 2-fold of the observed value for 

an accurately predicted DDI, this approach correctly predicted 44 out of 52 clinical DDIs (85% 

accuracy) (Fig. 2). The predictions for the remaining outliners (8 out of 52) were within-3 fold of 

the observed values and included 2 cases for fluconazole, 2 case for voriconazole, 2 cases for 

saquinavir, and 2 cases for clarithromycin. There were no false positive or false negative 

predictions. 

The mechanistic method: utilizing in vitro parameters estimated by Models A-C 

As described in Materials and Methods, each DDI was also predicted according to the 

inhibition mechanism of the compound. The magnitude of DDIs for the four reversible inhibitors 

(ketoconazole, aprepitant, fluconazole and voriconazole identified by Model C) was predicted by 

Eqs. 5 and 7. DDIs with the 8 TDI inhibitors (troleandomycin, saquinavir, clarithromycin, 

conivaptan, diltiazem, erythromycin, itraconazole and nefazodone identified by Model B) were 

predicted by Eqs. 8 and 9. DDIs with ritonavir, which was identified as a reversible and time 

dependent inhibitor by Model A, were predicted by Eqs. 10 and 11. Total average systemic 

plasma concentration of each inhibitor was used as [I] because in vitro parameters were 

estimated relative to total plasma concentration (Table 3); [I]g was calculated using Eq.6.  

Predicted AUC ratios are listed in Table 3, and plots of predicted DDIs versus observed values 

from clinical studies are shown in Fig 3. This approach correctly classified DDIs in 18 out of 20 

strong interactions (90% accuracy), 4 out of 28 moderate interactions (14% accuracy) and 3 out 

of 4 weak interactions (75% accuracy), respectively (Fig. 3). This approach predicted 34 out of 52 

clinical DDIs (65% accuracy) within 2-fold of the observed AUC changes and 46 out of 52 

clinical DDIs (88% accuracy) within 3-fold (Fig. 3). Predictions that were more than 3-fold 

different from observed values involved 1 case for saquinavir, 1 cases for erythromycin, 1 case 

for clarithromycin, 1 case for diltiazem and 2 cases for conivaptan. There were no false positive 

or false negative predictions. 
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Predictive performance of the single incubation time method for each of the three inhibition 

mechanisms  

Eight inhibitors were identified as TDIs by Model B, and the single incubation time 

method correctly classified the DDI caused by these 8 TDIs in 4 out of 10 strong interactions 

(40% accuracy); 9 out of 19 moderate interactions (47% accuracy) and 1 out of 1 weak 

interactions (100% accuracy). For 4 reversible inhibitors, the single incubation time method 

correctly classified the DDIs in 6 out of 8 strong interactions (75% accuracy); 4 out of 6 moderate 

interactions (67% accuracy) and 3 out of 3 weak interactions (100% accuracy). For ritonavir, the 

single incubation time method correctly classified DDIs in four interactions (75% accuracy). 

When the 2-fold cut-off criteria was used to evaluate the performance of the single incubation 

time method, 25 out of 30 clinical DDIs were predicted correctly for TDIs (83% accuracy), 14 out 

of 17 clinical DDIs were predicted correctly for reversible inhibitors (82% accuracy), and 5 out of 

5 clinical DDIs were predicted correctly for reversible and time dependent inhibitor ritonavir 

(100% accuracy). This retrospective analysis suggested that the single incubation time method 

was a strong predictor of DDIs due to TDIs as well as reversible inhibitors when the 2-fold 

criterion was used.  
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Discussion  

Hepatocytes obtained in well defined serum free media have previously been 

demonstrated to be a useful system for the estimation of CYP3A inhibition parameters (Zhao et 

al., 2005; McGinnity et al., 2006; Brown et al., 2007; Xu et al., 2009).  Zhao et al. (2005) 

evaluated time dependent inactivation of CYP3A in cryopreserved human hepatocytes for six 

drugs (amprenavir, diclofenac, diltiazem, erythromycin, raloxifene and TAO), and the IC50 values 

for hepatocytes were 2- to 60-fold higher than those for HLM after correcting for factors such as 

nonspecific binding and inhibitor consumption in hepatocytes. McGinnity et al. (2006) incubated 

three CYP3A inhibitors (erythromycin, TAO and fluoxetine) with cultured primary human 

hepatocytes for 48 hours, and the parameters associated with irreversible inhibition were in good 

agreement with those generated with HLM although lower values of kinact were observed in both 

Hepatocytes and HLM systems compared to the recombinant CYP3A. Brown et al. (2007) 

investigated six drugs (miconazole, ketoconazole, fluconazole, quinine, fluoxetine and 

fluvoxamine) in both rat micosomes and freshly isolated rat hepatocytes, and indicated that these 

systems gave similar estimates of inhibitory potency after correction for the nonspecific binding 

in each system for these CYP3A inhibitors. However, although all three studies noted above 

(Zhao et al., 2005; McGinnity et al., 2006; Brown et al., 2007) compared the in vitro inhibition 

parameters generated from microsomes to those from hepatocytes, the question of whether the 

parameters generated from hepatocytes resulted in an improved ability to predict human DDIs 

was not addressed.  Xu et al. (2009) noted that the values of kinact in HLM were higher and the 

values of unbound KI in HLM were lower than those estimated in cryopreserved human 

hepatocytes. The in vitro inactivation  parameters from cryopreserved human hepatocytes resulted 

in good overall prediction of in vivo DDI extent but there was a systematic over prediction with 

HLM data (Xu et al., 2009), and both hepatocyte and HLM prediction resulted in several false 

negative predictions. Lu et al. expanded the utility of cryopreserved human hepatocytes by using 

a suspension in human plasma and demonstrated a good agreement between predicted and 
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observed clinical DDIs involving  two known CYP3A inhibitors, ketoconazole and fluconazole 

(Lu et al., 2007; Lu et al., 2008a; Lu et al., 2008b). In the present report, the utility of 

cryopreserved human hepatocytes suspended in human plasma to predict in vivo DDIs was 

further explored using 13 reversible and TDIs of CYP3A and midazolam as the probe substrate.  

The approach to predict CYP3A DDI prediction utilized in the current report did not 

focus on an initial characterization of the mechanism of inhibition but rather employed a single 

IC50 measurement in hepatocytes suspended in human plasma; an analogous approach has been 

described in the HLM system (Obach et al., 2007; Grime et al., 2009; Burt et al., 2010). This 

single incubation time method captures both reversible and TDI by using appropriate 

experimental conditions. In these studies, 0.5x106 cryopreserved hepatocytes per ml were used 

because this is similar to 0.17 mg/ml HLM protein, a concentration commonly used in studies in 

HLMs (based on the scaling factors of 120 x 106 hepatocytes cells/g liver and 40 mg HLM/g 

liver). The inhibitor-alone incubation time with hepatocytes was 20 min and this would be 

expected to result in almost complete CYP3A inactivation given a typical HLM kinact value of 

approximately 0.1 min-1. However, it should be noted that the values of kinact of clarithromycin 

and saquinavir were 0.064 and 0.033, respectively (t1/2 respectively of 11.55 min and 20.02 min), 

and these relatively low values likely contributed to the DDI under-prediction for these two 

compounds (Table 3). The concentration of midazolam, employed to determine residual CYP3A 

activity (30 μM), was close to the Km value of 45 μM in HHSHP (preliminary experiments, and 

the estimate is based on total and not unbound midazolam concentration) to capture reversible 

inhibition in the IC50 measurement. The formation of 1’-hydroxymidazolam over a 35 min 

incubation time was used the quantify CYP3A activity. Under these conditions, metabolite 

formation was linear over time and yielded sufficient analytical response to characterize extensive 

CYP3A inhibition.  

  The results presented demonstrate that an IC50 value generated from a single incubation 

time was able to adequately predict the magnitude of an in vivo DDI (Table 3, Fig. 2). This IC50 
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value is combined with the total average systemic plasma concentration of the inhibitor in a 

predictive model that incorporates the fraction of the victim drug cleared by CYP3A, and 

intestinal availability of the victim drug (Eq. 5). This differs from previous approaches wherein 

the mechanism(s) of inhibition needs to be identified prior to the parameter estimation in vitro 

and DDI prediction in vivo. This single incubation time method was able to predict 85 % of 52 

clinical CYP3A DDI studies within 2-fold of the observed change in AUC regardless of the 

inhibition mechanism (Fig. 2). The high rate of successful prediction of DDI suggests that this 

relatively simple, mechanism independent approach will be of great use to determine the potential 

for CYP3A mediated DDIs for new candidates and previously uncharacterized molecules. This 

single incubation time approach to predicting DDIs may be particularly useful for 

molecules with a potential for exhibiting TDI in the early discovery stage when the 

standard time-consuming process of estimating the inactivation parameters (KI and kinact) 

in HLM may not be feasible. Although the single time point method may not provide the 

inhibition mechanism, it was able to accurately predict the DDIs related to 8 TDIs. 

Among these 8 TDIs, itraconazole is believed to exhibit  TDI due to the inhibitory metabolite 

formation (Isoherranen et al., 2004; Kunze et al., 2006; Quinney et al., 2008a; Templeton et al., 

2008) whereas the remaining seven TDIs were known to display MBI. The potential of predicting 

the interaction due to the inhibitory metabolite formation without synthesizing and testing the 

metabolite is an important feature of this model particularly  useful in the discovery phase of the 

development of a new chemical entity, since identification of the exact structure of the metabolite 

often may not be available in early discovery.   

It is well known that the expression of CYP3A enzymes in enterocytes results in 

significant presystemic intestinal metabolism of drugs and possible gut wall DDIs after oral 

administration (Schwenk, 1988; Kaminsky and Fasco, 1991; Paine and Oberlies, 2007). Clinical 

studies included in the dataset used in this investigation showed that ketoconazole, voriconazole, 
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troleandomycin, erythromycin, clarithromycin, diltiazem and conivaptan treatments led to a 

higher AUC increase for oral midazolam than for intravenous midazolam. These observations are 

consistent with significant inhibition of gut wall CYP3A given that midazolam is a drug with  a 

moderate hepatic extraction ratio. The single incubation time method showed accurate prediction 

for both intravenous and oral midazolam AUC changes with erythromycin, clarithromycin, 

diltiazem, TAO and conivaptan. For example, clarithromycin administration (500 mg bid for 7 

days) led to an increase in the AUC of midazolam by 3.20-fold following intravenous dosing and 

8.00-fold following oral dosing (Quinney et al., 2008b). The corresponding predictions using the 

single incubation time method were 2.47-fold and 6.18-fold increases in midazolam AUC, 

respectively. In some cases, the oral midazolam DDI (e.g. ketoconazole) has not been well 

predicted.  The reason for such an outcome is that the value of 0.57 which has been used as Fg for 

midazolam in this investigation (Ernest et al., 2005; Obach et al., 2006) is higher than the true 

value observed in some of clinical DDI studies. For instance, Tsunoda et. al. (1999), estimated the 

Fg value for midazolam to be 0.40 (assuming Fa=1). In order to illustrate the impact of Fg value to 

the DDI prediction outcome, another set of DDI predictions based on Fg, midazolam = 0.40 was 

constructed (Fig. 4a). The clinical studies with victim drugs other than midazolam were excluded 

from this figure. For the eleven clinical studies in which midazolam was dosed intravenously, the 

difference in Fg, midazolam would not influence the outcome of these DDI predictions. When Fg, 

midazolam = 0.40 was used,  it was found that 38 out of 46 clinical DDIs were predicted within 2-

fold of the observed value (83% accuracy), 44 out of 46 within 3-fold of the observed value (95% 

accuracy), and only 2 out of 46 have been slightly overpredicted beyond the 3-fold range. For the 

ketoconazole-midazolam interaction from Tsunoda et. al. (1999), the prediction was improved 

from 8.47 to 12.05 and is closer to the observed value of 16-fold AUC change due to a better 

representation of the intestinal interaction when Fg, midazolam = 0.40. This example reinforces the 

concept that it is not only the in vitro inhibition parameters that influence the quality of the final 
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DDI prediction, but also whether the pharmacokinetic parameters utilized in the model (Fg and fm 

for the victim drug) represent the population in a specific clinical DDI study. 

Although there is no need to correct the systemic plasma concentration [I] with fu,p for the 

hepatic interaction prediction when the Ki,app  values generated from hepatocytes plasma were 

utilized, the fu,p value was used to correct the Ki,app  for the intestinal interaction prediction because 

entocytes are considered as plasma protein-free environment. It is worthwhile to note that the 

intestinal inhibitor concentration calculated from the current model often exceeds the solubility of 

these drugs in intestinal fluid and generally is much higher than the Ki,app before any fu,p correction 

([I]g >>Ki,app). As a result the inhibitors examined in this study are predicted to completely inhibit 

the CYP3A in gut wall over the time during which the victim drugs are absorbed. Therefore, the 

final intestinal DDI prediction depends only on the value of Fg.  This point is illustrated in Figure 

4b, where there is no fu,p correction for the Ki,app in the intestinal interaction and the outcome of  

DDI prediction was similar to the performance when fu,p was employed. One exception to this 

general observation was the case of aprepitant, which displays high a Ki,app value and a fu,p 

correction is needed for the optimal prediction of the intestinal wall DDI component.  

Following initial identification of inhibitors and DDI prediction by single incubation time 

method, it may be desirable when examining new compounds to characterize the inhibition 

mechanism and estimate specific enzyme inhibition parameters. In the mechanistic approach, the 

incubation times with the inhibitor are 0, 10 and 20 min, and three IC50 curves are generated. All 

the data are incorporated into three models A-C (Eqs. 2-4) which are designed to differentiate 

reversible inhibitors, TDIs and inhibitors with both properties.  These models were used to 

correctly indentify ketoconazole, aprepitant, fluconazole and voriconazole as reversible 

inhibitors; erythromycin, troleandomycin, saquinavir, clarithromycin, conivaptan, diltiazem, 

itraconazole and nefazodone as TDIs; ritonavir as a reversible and time dependent inhibitor. The 

in vitro inhibition constants estimated from the mechanistic models A-C were used to predict the 

magnitude of a DDI when combined with the total average plasma concentration of the inhibitor 
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and incorporated into corresponding equations. With the knowledge of inhibition mechanism, 

65% of 52 clinical DDIs were accurately predicted within 2-fold of the observed fold change in 

AUC (Fig. 3).  

The results reported here on the prediction of CYP3A DDIs using inhibitory parameters 

generated with human hepatocytes suspended in human plasma demonstrated that this robust 

system overcomes a number of perceived weaknesses associated with other in vitro approaches. 

In particular this model provides an integrated cellular environment in which all modes of hepatic 

metabolism are retained and the uncertainty in concentration of inhibitor at the enzyme is greatly 

reduced. The single incubation time method simply requires a single inhibition parameter to 

predict the DDI caused by CYP3A inhibition, and there is no need to correct for nonspecific 

binding. Furthermore, in these predictions the total average systemic plasma concentration of the 

inhibitor provides a reasonable value for both reversible inhibitors and TDIs without the need for 

the determination of fraction unbound in plasma to calculate unbound drug concentrations. The 

study design for inhibition using HHSHP has been simplified such that there is only one time 

point, no dilution step (often performed with TDIs in HLM incubation) and the same midazolam 

concentration (close to its Km) is used in all IC50 assessments. This simple protocol design is 

achievable due to the fact that Model A has demonstrated the capability to extrapolate the 

reversible and time dependent inhibition properties simultaneously.  

 In summary, cryopreserved human hepatocytes suspended in human plasma were 

determined to be a robust and reliable system for the prediction of CYP3A DDIs. These 

predictions may be made by utilizing an IC50 determined at a single incubation time regardless of 

the inhibition mechanism, and if needed, mechanism may also be explored with the mechanistic 

method. 
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Figure Legends 
 

Figure 1.  Relationship between the relative CYP3A activity and inhibitor concentration. The 

relative CYP3A activity is determined as the rate of 1’-OH midazolam formation in the 

presence of inhibitor to that in the absence of inhibitor.  The best fit among three models for 

each inhibitor was chosen and presented as following: a.) ketoconazole by Model C; b.) 

erythromycin by Model B; c.) itraconazole by Model B; d.) ritonavir by Model A. The closed 

circles represent 0 min inhibitor incubation alone, and the solid lines represent the best fits for 0 

min inhibitor concentration; the closed diamonds represent 10 min inhibitor incubation alone, and 

the long dashed lines represent the best fits for 10 min inhibitor concentration; the closed squares 

represent 20 min inhibitor incubation alone, and the dotted lines represent the best fits for 20 min 

inhibitor concentration.   

Figure 2. The single incubation time method: comparison of observed versus predicted AUC 

ratios.  The square boxes correspond to areas of weak (1 to 2-fold increase in AUC ratio), 

moderate (2 to 5–fold increase in AUC ratio) and strong (> 5-fold increase in AUC ratio) 

inhibition.  The solid line depicts the line of unity; the long dashed line represents a twofold 

deviation from unity; the short dashed line represents a threefold deviation from unity (13 drugs 

and 52 clinical DDIs).  

Figure 3. The mechanistic method: comparison of observed versus predicted AUC ratios (13 

drugs and 52 clinical DDIs). The square boxes correspond to areas of weak (1 to 2-fold increase 

in AUC ratio), moderate (2 to 5–fold increase in AUC ratio) and strong (> 5-fold increase in 

AUC ratio) inhibition.  The solid line depicts the line of unity; the long dashed line represents a 

twofold deviation from unity; the short dashed line represents a threefold deviation from unity. 

Figure 4. The single incubation time method: comparison of observed versus predicted AUC 

ratios.  Panel a: The square boxes correspond to areas of weak (1 to 2-fold increase in AUC 

ratio), moderate (2 to 5–fold increase in AUC ratio) and strong (> 5-fold increase in AUC ratio) 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on January 6, 2011 as DOI: 10.1124/dmd.110.036400

 at A
SPE

T
 Journals on A

pril 20, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


                                                                                                                        DMD # 36400 

33 
 

inhibition.  The solid line depicts the line of unity; the long dashed line represents a twofold 

deviation from unity; the short dashed line represents a threefold deviation from unity (12 drugs 

and 46 clinical DDIs). The baseline value of Fg,midazolam used in Fig. 2 (0.57) were changed to 0.40. 

Panel b, fu,p used in Fig 2 were changed to 1  (no fu,p correction of Ki,app for the intestinal 

interaction, 13 drugs and 52 clinical DDIs).  
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Table 1.  IC50 values of inhibitors from human hepatocytes suspended in human plasma: 

single IC50 assessment (20 min inhibitor incubation alone) and independent multiple IC50 

assessment (0, 10 and 20 min inhibitor incubation alone). 

Inhibitor IC50 (µM) 
 Single IC50 

assessment 
 Multiple IC50 assessment 

Inhibitor incubation alone 
(min) 

20 0 10  20 

Ketoconazole 1.26 ± 0.23 0.98 ± 0.14 1.08 ± 0.11 1.14 ± 0.21 

Fluconazole 7.61 ± 2.67 7.05 ± 1.83 8.05 ± 1.78 7.57 ± 2.34 

Aprepitant 24.10 ± 7.30 35.62 ± 8.30 38.10 ± 10.40 23.09 ± 6.80 

Voriconazole 3.01 ± 0.58 3.82 ± 0.73 4.20 ± 0.39 3.32 ± 0.64 

Nefazodone 1.70 ± 0.31 27.21 ± 9.15 4.75 ± 0.93 1.59 ± 0.23 

Troleandomycin 0.16 ± 0.02 3.48 ± 0.49 0.54 ± 0.11 0.23 ± 0.03 

Erythromycin 2.64 ± 0.93 12.73 ± 3.02 4.79 ± 0.89 2.58 ± 0.82 

Clarithromycin 1.98 ± 0.60 16.24 ± 4.11 2.55 ± 1.33 1.68 ± 0.47 

Diltiazem 1.94 ± 0.24 3.83 ± 0.88 2.22 ± 0.73 2.28 ± 0.99 

Saquinavir 4.57 ± 0.52  5.56 ± 1.06 7.09 ± 3.26 3.83 ± 0.64 

Itraconazole 0.22 ± 0.05 0.78 ± 0.12 1.22 ± 0.15 0.37 ± 0.06 

Conivaptan 1.70 ± 0.56 46.11 ± 15.97 2.69 ± 0.67 1.53 ± 0.17 

Ritonavir 0.15 ± 0.01 0.16 ± 0.01 0.13 ± 0.01 0.13 ± 0.01 

Note: Each number represents the mean and standard error of estimate of triplicates. 
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Table 2. Inhibition constants predicted from the best fit of models A-C. 

Inhibitor  Inhibition constant 
 Predicted by 

Model* 
Ki (µM) KI (µM) kinact (min-1) 

Ketoconazole C 0.59 ± 0.09   

Fluconazole C 4.01 ± 0.62 - - 

Aprepitant C 11.34 ± 0.72 - - 

Voriconazole C 1.62 ± 0.13 - - 

Nefazodone B - 22.43 ± 7.37 0.05 ± 0.005 

Troleandomycin B - 5.93 ± 1.32 0.07 ± 0.003 

Erythromycin B - 25.15 ± 4.90 0.08 ± 0.005 

Clarithromycin B - 37.43 ± 9.24 0.09 ± 0.008 

Diltiazem B - 2.71 ± 0.73 0.04 ± 0.004 

Saquinavir B - 4.67 ± 2.35 0.03 ± 0.005 

Itraconazole B - 5.14 ± 1.37 0.05 ± 0.001 

Conivaptan B - 3.26 ± 1.10 0.03 ± 0.004 

Ritonavir A 8.59 ± 3.75 0.82 ± 0.14 0.09 ± 0.01 

Ritonavir C 0.06 ± 0.01 - - 

* Three inhibition models incorporating irreversible (Model B), reversible (Model C), or both 

(Model A), were employed to estimate the inactivation parameters (KI and kinact) and/or reversible 

inhibition constant (Ki) for each inhibitor. Refer to the Methods Section for details of the models. 
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Inhibitor Inhibitor Dose 

Regimen* 

[I]¶
 

(µM) 
fu,p Victim drugּד      Predicted    

in AUC  
 
Single 
incubation 
time #   

Fold increase 
 
 
Mechanistic 
method$ 

Observed fold-
increase in 

AUC¥ 

(Mean±SD) 

Reference 

Ketoconazole 400 mg, qd, 4d, p.o. 2.82 0.01 Midazolam 
D4, 1h after 

7.52 7.59 15.90 ± 2.90 (Olkkola et al., 1994) 

Ketoconazole 400 mg, qd, 10d, p.o. 2.82 0.01 Midazolam 
D6 

7.50 7.59 9.51 (Chung et al., 2006) 

Ketoconazole 200 mg, bid, 2d, p.o. 3.46  0.01 Midazolam 
D1, 2nd 

8.47 8.53 16.00 ± 6.1  (Tsunoda et al., 1999) 

Ketoconazole 200 mg, bid, 2d, p.o 3.46  0.01 Midazolam, i.v. 
D1, 2nd 

3.21 3.32 5.10 ± 1.90 (Tsunoda et al., 1999) 

Ketoconazole 200 mg, bid, 2d, p.o. 4.76  0.01 Midazolam 
D2 

10.07 10.16 6.47 ± 3.4 (Eap et al., 2004) 

Ketoconazole 200 mg, qd, 12d, p.o.  1.88  0.01 Midazolam 
D12, 1h after 

5.95 6.00 7.72 ± 5.96 (Lam et al., 2003) 

Ketoconazole 200 mg, sd, p.o. 1.87  0.01 Midazolam 
2h after 

5.93 5.99 6.45 (McCrea et al., 1999) 

Fluconazole 400 mg, sd, p.o. 21.55 0.89 Midazolam 
2h after 

8.25 7.99 3.51 ± 1.7 (Olkkola et al., 1996) 

Fluconazole D1: 400mg; D2-D5: 
200 mg, qd, p.o. 

29.99  0.89 Midazolam 
D6, 2h after 

9.75 9.46 3.60 ± 2.1 (Olkkola et al., 1996) 

Fluconazole 100 mg, sd, p.o. 5.6  0.89 Midazolam 
1h after 

3.71 3.60 2.16 ± 1.2 (Kharasch et al., 2005) 

Table 3.  Predictions of CPY3A mediated DDIs from in vitro inhibition parameters using the single incubation time method and the 

mechanistic method (52 clinical DDIs/13 drugs) 
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Aprepitant 125mg, sd, p.o. 1.72  0.05 Midazolam 
1h after 

1.96 1.86 2.27 (Majumdar et al., 2003) 

Aprepitant D1: 125mg; D2-5: 
80mg, qd, p.o. 

2.22  0.05 Midazolam 
D5, 1h after 

2.02 1.90 3.30 (Majumdar et al., 2003) 

Aprepitant 40mg, sd, p.o. 0.41 0.05 Midazolam 
1h after 

1.72 1.67 1.22 (Majumdar et al., 2003) 

Aprepitant D1: 40mg; D2-5: 
25mg, qd, p.o. 

0.3  0.05 Midazolam 
D5, 1h after 

1.71 1.70 1.02 (Majumdar et al., 2003) 

Aprepitant 125 mg, sd. p.o. 3.11 0.05 Midazolam, i.v 
1h after 

1.14 1.15 1.47 ± 0.14 (Majumdar et al., 2007) 

Voriconazole D1: 400mg; D2: 
200mg, bid, p.o. 

1.64 0.42 Midazolam, i.v. 
D2, 1h after 

1.57 1.53 3.61 (Saari et al., 2006) 

Voriconazole D1: 400mg; D2: 
200mg, bid, p.o. 

1.46 0.42 Midazolam 
D2, 1h after 

3.23 3.16 9.85 (Saari et al., 2006) 

Nefazodone D1-D4: 100mg 
titration to 200mg, 

bid; D5-D12: 200mg, 
bid, p.o. 

1.73 0.01 Midazolam 
D12, 1h after 2nd 

4.66 11.66 4.44 (Lam et al., 2003) 

Troleandomycin 500 mg, bid, p.o.  1.76 0.04 Midazolam, i.v. 
2h after 1st 

5.83 7.20 3.02 ± 1.44 (Phimmasone and Kharasch, 

2001) 

Troleandomycin 500 mg, bid, p.o. 1.76 0.04 Midazolam, i.v. 
2h after 1st 

5.83 7.20 4.50 ± 1.0 (Kharasch et al., 2004) 

Troleandomycin 500 mg, bid, p.o. 1.76 0.04 Midazolam 
2h after 1st 

15.88 19.79 15.70 ± 2.17 (Kharasch et al., 2004) 

Erythromycin 200 mg, qid,7d,  p.o.  0.44 0.16 Midazolam 
D7, 1h after 1st 

2.37 6.87 3.38 ± 1.40 (Okudaira et al., 2007) 

Erythromycin 200 mg, qid, 4d, p.o.  0.44 0.16 Midazolam 
D4, 1h after 1st 

2.37 6.87 3.38 ± 1.60 (Okudaira et al., 2007) 

Erythromycin 200 mg, qid, 2d, p.o.  0.44 0.16 Midazolam 
D2, 1h after 1st 

2.37 6.87 2.32 ± 0.90 (Okudaira et al., 2007) 
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Erythromycin 500 mg, tid, 5d, p.o. 0.95 0.16 Midazolam 
D5, 1.5h after 1st 

3.08 10.46 3.81 ± 0.70 (Zimmermann et al., 1996) 

Erythromycin 500 mg, tid, 6d, p.o. 4.22 0.16 Midazolam 
D6, 2h after 2nd 

6.47 18.05 4.41 ± 1.04 (Olkkola et al., 1993) 

Erythromycin 500 mg, tid, 6d, p.o. 1.64 0.16 Midazolam, i.v. 
D6, 2h after 2nd 

1.64 5.11 2.17± 0.38 (Olkkola et al. 1993) 

Clarithromycin 500 mg, bid, 7d, p.o. 0.90 0.5 Midazolam, i.v. 
D7, 2h after 1st 

1.50 3.51 3.10 ± 0.70 (Gorski et al., 1998) 

Clarithromycin 500 mg, bid, 7d, p.o. 3.20 0.5 Midazolam, i.v. 
D7, 2h after 1st 

2.47 5.84 3.20 ± 0.60 (Quinney et al., 2008b) 

Clarithromycin 250 mg, bid, 5d, p.o. 2.4 0.5 Midazolam 
D5, 1.5h after 1st 

5.24 14.11 3.60 (Yeates et al., 1996) 

Clarithromycin 500mg, bid, 7d, p.o. 0.90 0.5 Midazolam 
D7, 2h after 1st 

3.19 8.89 8.10 ± 2.40 (Gorski et al., 1998) 

Clarithromycin 500mg, bid, 7d, p.o. 3.20 0.5 Midazolam 
D7, 2h after 1st 

6.18 15.64 8.00 ± 2.20 (Quinney et al., 2008b) 

Clarithromycin 500mg, bid, 7d, p.o. 0.90 0.5 Midazolam 
D7, 2h after 1st 

3.19 8.89 5.75 ± 0.62 (Gurley et al., 2008) 

Clarithromycin 500mg, bid, 7d, p.o. 0.90 0.5 Midazolam 
D7, 2h after 1st 

3.19 8.89 7.79 ± 1.79 (Gurley et al., 2006) 

Diltiazem D1: 60mg, bid; D2: 
60mg, tid, p.o. 

0.38 0.22 Midazolam 
D2, 1h after 2nd 

2.36 13.69 3.75 ± 0.11 (Backman et al., 1994) 

Diltiazem 120mg, bid, 6d, p.o. 0.16 0.22 Midazolam, i.v. 
D6 

1.09 3.60 1.77 ± 0.21 (Zhang et al., 2009) 

Diltiazem 120mg, bid, 6d, p.o. 0.16 0.22 Midazolam 
D6 

2.01 9.30 4.11 ± 0.46 (Zhang et al., 2009) 

Saquinavir 1200mg, tid, 5d, p.o. 0.59 0.02 Midazolam, i.v. 
D3, 2h after 2nd 

1.14 4.37 2.49 (Palkama et al., 1999) 

Saquinavir 1200mg, tid, 5d, p.o. 0.59 0.02 Midazolam 
D3, 2h after 2nd 

2.25 11.48 5.14 (Palkama et al., 1999) 

Saquinavir 1200mg, tid, 7d, p.o. 1.15 0.02 Sildenafil 
D7 

3.75 10.24 3.10 (Muirhead et al., 2000) 
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* Inhibitor dose regimen: 400 mg, qd, 10d, p.o. represents the inhibitor dosed at 400 mg, once a day for 10 consecutive days;  ¶ The source of [I] is 

listed in the supplement data in details; ּד Victim drug: midazolam D12, 1h after 2nd  represents at the 12th day, midazolam was orally given 1h after 

Itraconazole 200 mg, qd, 4d,  p.o. 0.28 0.002 Midazolam 
D4, 1h after 

5.28 10.12 10.79 ± 0.12 (Olkkola et al., 1994) 

Itraconazole 200 mg, qd, 6d, p.o. 0.48 0.002 Midazolam 
D6, 2h after 

7.21 12.94 6.60 (Olkkola et al., 1996) 

Itraconazole 200 mg, qd, 6d, p.o. 0.11 0.002 Midazolam 
D1, 2h after 

3.28 6.07 3.4 (Olkkola et al., 1996) 

Itraconazole 200 mg, qd, 4d, p.o. 0.11 0.002 Midazolam 
D4 

3.27 6.07 6.75 (Backman et al., 1998) 

Itraconazole 100 mg, qd, 4d, p.o. 0.19 0.002 Midazolam 
D4, 2h after 

4.27 8.25 5.74 ± 0.15 (Ahonen et al., 1995) 

Conivaptan 40 mg, sd, p.o. 1.57 0.01 Midazolam 3.91 16.55 3.00 (NDA(021697) 

Conivaptan 40 mg, sd, p.o. 1.57 0.01 Midazolam, i.v. 1.91 6.42 2.00 (NDA 021697) 

Ritonavir 500mg,bid,7d, p.o. 14.09 0.02 Sildenafil 
D7 

12.27 12.46 11 (Muirhead et al., 2000) 

Ritonavir D1: 200mg, tid; D2; 
300mg, tid; D3: 
300mg, qd, p.o. 

11.09 0.02 Fentanyl, i.v. 
D2, 2h after 2nd 

1.36 1.36 2.7 (Olkkola et al., 1999) 

Ritonavir 200mg, bid, 2d, p.o. 1.66 0.02 Triazolam 
D2, 1h after 1st 

9.60 11.12 20.60 ± 1.09 (Greenblatt et al., 2000b) 

Ritonavir D1: 200mg, qd; D2; 
200mg, bid; D3: 
200mg, qd, p.o. 

2.21 0.02 Alprazolam 
D2, 1h after 1st 

4.99 5.57 2.47 ± 0.06 (Greenblatt et al., 2000a) 

Ritonavir 200mg, qd, 2d, p.o. 3.24 0.02 Trazodone 
D2, 1h after 1st 

2.02 2.05 2.34 ± 0.17 (Greenblatt et al., 2003) 
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the second dose of the inhibitor; # Single incubation time: utilizing the single IC50 value ( 20 min inhibitor incubation alone, the value listed in the 

first column in Table 1) with a model based on the reversible inhibition mechanism (Eq. 5) ; $ Mechanistic method: utilizing the inhibition 

parameters estimated from models A-C (values listed in Table 2) with the corresponding model for a given mechanism of inhibition (Eq. 5, 7 and 

8);  ¥ clinically observed DDIs calculated by AUC in the presence and absence of inhibitor; i.v: intravenous 
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