Cytochrome P450 2S1 is Reduced by NADPH-Cytochrome P450 Reductase

Yi Xiao, Raku Shinkyo, and F. Peter Guengerich

Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
Running title: P450 2S1 reduction by NADPH-P450 reductase

Address correspondence to:

Prof. F. Peter Guengerich

Department of Biochemistry and Center in Molecular Toxicology

Vanderbilt University School of Medicine

638 Robinson Research Building, 2200 Pierce Avenue, Nashville, Tennessee 37232-0146

Telephone: (615) 322-2261, FAX: (615) 322-3141, E-mail: f.guengerich@vanderbilt.edu

Text: 15 pages

Tables: 1

Figures: 1

References: 21

Abstract: 95 words

Introduction: 237 words

Results and Discussion (combined): 506 words

Abbreviations:

AQ4,1,4-\textit{bis} \{2-(dimethylamino)ethyl}amino\} -5,8-dihydroxyanthracene-9,10-dione;

AQ4M,1-\{2-(dimethylamino-N-oxide)ethyl\}amino\} -4-\{2-(dimethylamino)ethyl\}amino\} -5,8-dihydroxyanthracene-9,10-dione; AQ4N,

1,4-\textit{bis}\{2-(dimethylamino-N-oxide)ethyl\}amino\} -5,8-dihydroxyanthracene-9,10-dione; HPLC,

high-performance liquid chromatography P450, cytochrome P450
Abstract

Cytochrome P450 (P450) 2S1 is one of the orphan P450s without a clear physiological function. Controversy has arisen as to whether it can interact with NADPH-P450 reductase and accept electrons. The reduction of AQ4N [1,4-bis{[2-(dimethylamino-N-oxide)ethyl]amino}-5,8-dihydroxyanthracene-9,10-dione] by P450 2S1 was confirmed, and the NADPH consumption rates were measured aerobically and anaerobically in the absence and presence of the drug. The reduction kinetics of P450 2S1 were rapid, as measured by stopped-flow kinetics. These results confirm that P450 2S1 can be reduced by NADPH-P450 reductase and suggest normal mixed-function oxidase roles of P450 2S1 to be revealed.
Introduction

P450 2S1 is one of the orphan P450s with unknown physiological function (Guengerich et al., 2010; Guengerich et al., 2011). P450 2S1 mRNA can be detected in human skin and liver, and there are also reports of expression in trachea, lung, stomach, small intestine, and spleen (Guengerich et al., 2011). The gene is regulated by the Ah receptor (Rivera et al., 2002; Rivera et al., 2007). Although P450 2S1 has been expressed in Escherichia coli, purified, and studied, its substrate specificity is still controversial (Wu et al., 2006; Guengerich et al., 2011). To explain the limited catalytic activity of P450 2S1, Bui and Hankinson (Bui and Hankinson, 2009; Bui et al., 2009; Bui et al., 2010) attempted to measure the formation of the Fe$^{2+}$-CO complex under aerobic conditions and concluded that P450 2S1 is not capable of interacting with NADPH-P450 reductase nor accepting electrons from the reductase. In contrast, Nishida et al. (Nishida et al., 2010) recently reported observation of a Fe$^{2+}$-CO complex formed anaerobically. In that study, P450 2S1 was reported to reduce the pro-drug AQ4N to its mono N-oxide intermediate AQ4M and finally to AQ4. A net 2-electron transfer mechanism was proposed (for AQ4M formation) (Nishida et al., 2010). In this study, we reproduced the anaerobic reduction of AQ4N, measured NADPH oxidation rates, and measured the reduction kinetics using a stopped-flow apparatus. Our results confirm that P450 2S1 can efficiently accept electrons from NADPH-P450 reductase.

Materials and Methods

Chemical and Reagents

Desferoxamine, mitoxantrone, protocatechuate, and protocatechuate dioxygenase were purchased
from Sigma-Aldrich (St. Louis, MO). AQ4N, AQ4M, and AQN were gifts from Dr. Klaus Pors (University of Bradford, UK). Human P450 2S1 (Wu et al., 2006) and rat NADPH-P450 reductase (Hanna et al., 1998) were expressed in *E. coli* and purified as previously reported.

Anaerobic Reduction

Anaerobic reduction experiments were performed using an OLI RS M-1000 stopped-flow instrument (On-Line Instrument Systems, Bogart, GA). Samples (in glass tonometers) were deaerated using an argon/vacuum manifold as described previously (Guengerich et al., 2004), utilizing a protocatechuate/protocatechuate dioxygenase oxygen-scrubbing system (Patil and Ballou, 2000). P450 2S1 (2 µM) was pre-incubated with NADPH-P450 reductase (4 µM), 120 µM L-α-1,2-dilauoryl-sn-glycero-3-phosphocholine, 100 mM potassium phosphate buffer (pH 7.4), and AQ4N (200 µM) and reduced upon the addition of NADPH (150 µM) from a second syringe. Rates were analyzed using the OLIS software and in GraphPad Prism (GraphPad, San Diego, CA).

Enzyme activity of P450 2S1 towards AQ4N

Reactions were carried out in duplicate in 1.5-ml Eppendorf tubes at 37 °C. Anaerobic incubations were carried out under a nitrogen atmosphere inside a glovebox (Labconco Protector® Controlled Atmosphere). Enzyme reaction mixtures typically contained 0.1 µM P450 2S1, 0.2 µM NADPH-P450 reductase, 160 µM L-α-1,2-dilauoryl-sn-glycero-3-phosphocholine, 1 mM desferoxamine, 100 mM potassium phosphate buffer (pH 7.4), and 200 µM AQ4N (Nishida et al., 2010). After pre-incubation for 5 min, the reactions were started by the addition of n
NADPH-generating system (Guengerich and Bartleson, 2007), and aliquots were terminated by the addition of three volumes of CH₃OH (with 5 μM mitoxantrone as an internal standard) at times of 0, 1, 2, 3, 4, 5, and 6 min. Samples were prepared and analyzed by HPLC as described (Swaine et al., 2000) with a Thermo Hypersil GOLD octadecylsilane column (150 mm × 2.1 mm I.D.) employing isocratic elution with a 50 mM NH₄HCO₂ buffer (pH 3.6):CH₃CN mixture (89:11, v/v). Formation of AQ4M was used as a measure of enzyme activity.

Determination of NADPH consumption rates

NADPH oxidation rates for P450 2S1 were determined using 0.05 μM P450 2S1, 0.10 μM NADPH-P450 reductase, 160 μM L-α-1,2-dilauroyl-sn-glycero-3-phosphocholine, 1 mM desferoxamine, and 100 mM potassium phosphate buffer (pH 7.4). For the determination of NADPH consumption rates under anaerobic conditions, reconstituted enzyme mixtures were deaerated in all-glass anaerobic cuvettes using an argon/vacuum manifold as described previously (Guengerich et al., 2004). Reconstituted enzymes were pre-incubated for 5 min at 37 °C in the presence or absence of AQ4N (200 μM). Reactions were initiated with the addition of NADPH to a final concentration of 150 μM and A₃₄₀ was monitored (Cary 14/OLIS instrument). Rates were calculated using the value Δε₃₄₀ = 6.22 mM⁻¹ cm⁻¹. Experiments were conducted in duplicate.

Results and discussion

The reduction of AQ4N to AQ4M is proposed to be a net 2-electron transfer mechanism (Nishida et al., 2010). We reproduced the hypoxic activation of AQ4N by P450 2S1, measured to
be 18.2 min\(^{-1}\) under anaerobic conditions and <0.5 min\(^{-1}\) under aerobic conditions.

The steady-state rates of oxidation of NADPH by P450 2S1 in the presence of NADPH-P450 reductase were also measured (Table 1). The higher oxidation rate under aerobic conditions confirms the acceptance of electrons by P450 2S1 from NADPH-P450 reductase. Because the rate of AQ4N catalysis under aerobic conditions is very low, the increased NADPH consumption in the presence of AQ4N presumably comes from electron transfer to form partially reduced oxygen products instead of being transferred to AQ4N.

The rate of product formation was measured to be 18.2 min\(^{-1}\). The NADPH consumption rate without air in the presence of AQ4N was 28.2 min\(^{-1}\) and 12.6 min\(^{-1}\) in the absence of AQ4N, suggesting roughly quantitative coupling efficiency, i.e. all additional electrons are transferred to substrate AQ4N.\(^1\)

The reduction step can be studied by monitoring the formation of the Fe\(^{2+}\)·CO complex near 450 nm in the absence of O\(_2\), which will compete with CO and lead to P450 re-oxidation (Gigon et al., 1969; Guengerich and Johnson, 1997). Our kinetic reduction data, measured in a stopped-flow apparatus (Fig. 1), clearly shows a rapid increase in \(A_{450}\), indicating the acceptance of electrons by P450 2S1 from NADPH-P450 reductase.

Bui and Hankinson reported that P450 2S1 could not be reduced by NADPH-P450 reductase and that several catalytic activities of P450 2S1 could be observed if reactions were supported by oxygen surrogates, e.g. alkyl hydroperoxides (Bui and Hankinson, 2009; Bui et al., 2009; Bui et al., 2010). In contrast, Nishida et al. reported the observation of a Fe\(^{3+}\)·CO complex produced by P450 2S1 and AQ4N (rate not measured) (Nishida et al., 2010). A serious caveat in the work of Bui and
Hankinson (Bui and Hankinson, 2009) is that the reduction work was done aerobically, under which conditions ferrous P450s are rapidly reoxidized (Guengerich et al., 1976). Nishida et al. (Nishida et al., 2010) also emphasized that the conclusion of Bui et al. (Bui and Hankinson, 2009; Bui et al., 2009; Bui et al., 2010) that P450 2S1 normally uses lipid peroxides for its catalytic function is invalid, in that many P450s can react with lipid hydroperoxides through a scavenger pathway that generates lipid alkoxy and peroxy radicals. These radicals can enter co-oxidation reactions outside of P450 active sites (Mansuy et al., 1982; Ortiz de Montellano, 1995). In another recent publication, Bui et al. (Bui et al., 2010) reported isomerization activity of P450 2S1 in a NADPH-independent manner. However, such isomerization activity has been seen with several other P450 enzymes and its physiological role is not validated (Weiss et al., 1987; Chang et al., 1996).

In conclusion, our results are in agreement with previous findings (Nishida et al., 2010) that P450 2S1 can accept electrons from NADPH-P450 reductase. A physiological role of P450 2S1, if it exists, remains to be revealed.
Authorship Contributions

Participated in research design: Xiao, Shinkyo, and Guengerich

Conducted experiments: Xiao, Shinkyo, and Guengerich

Performed data analysis: Xiao and Guengerich

Wrote or contributed to the writing of the manuscript: Xiao and Guengerich
References

Footnotes

This work was supported by the United States Public Health Service [R37 CA090426, P30 ES000267] to F.P.G.

1The NADPH oxidation rate measured in the absence of air is attributed to trace oxygen in the system, corresponding to ~6 nmol consumed in 3 min (~5 ppm in gas phase).
Legend for figure

FIG 1. Reduction kinetics of P450 2S1 (with AQ4N). Stopped-flow absorbance trace of the reduction of P450 2S1 (2 μM) by NADPH-P450 reductase (4 μM) in the presence of L-(−)-1,2-dilauroyl-sn-glycero-3-phosphocholine (120 μM) and AQ4N (200 μM) upon the addition of NADPH (150 μM). The rate was 39.9 s⁻¹ (measured by averaging results from sixteen independent shots).
Table

Table 1

NADPH oxidation rates

<table>
<thead>
<tr>
<th></th>
<th>(v) (min(^{-1}))(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plus air</td>
<td></td>
</tr>
<tr>
<td>Minus AQ4N</td>
<td>23.3 ± 2.6</td>
</tr>
<tr>
<td>Plus AQ4N</td>
<td>45.7 ± 4.7</td>
</tr>
<tr>
<td>Minus air</td>
<td></td>
</tr>
<tr>
<td>Minus AQ4N</td>
<td>12.7 ± 2.9</td>
</tr>
<tr>
<td>Plus AQ4N</td>
<td>28.2 ± 0.8</td>
</tr>
</tbody>
</table>

\(^a\)Results are means of duplicate experiments ± range.