The Development, Characterisation and Application of an
OATP1B1 Inhibition Assay in Drug Discovery

Patrick Barton, Matthew G. Soars, Manfred Ismair, Rachael Jupp and
Robert J. Riley

Department of Discovery DMPK AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicestershire UK (MI, PB); Department of Medicinal Chemistry AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicestershire UK (RJR); Department of Bioscience AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicestershire UK (RJ); Metabolism and Pharmacokinetics, Bristol-Myers Squibb, 5 Research Pathway, Wallingford, CT, 06492, USA (MGS)
Use of OATP1B1 Inhibition in Drug Discovery

Corresponding author – Patrick Barton

Department of Chemistry, AstraZeneca Charnwood, Bakewell Road,
Loughborough, Leics, LE11 5RH, UK

Tel. (01509) 644039 Fax:(01509) 645557

E-mail: patrick.barton@astrazeneca.com

Number of Text pages 39
Number of Tables 2
Number of Figures 6
Number of References 52
Number of words in Abstract 249
Number of words in Introduction 547
Number of words in Discussion 782

Abbreviations

OATP Organic anion transporting polypeptide
CYP Cytochrome P450
NCE New Chemical entity
DDI Drug-Drug Interaction
DMEM Dulbecco’s Modified Eagle Medium
DMSO Dimethyl sulfoxide
OOB Out-of-bag
MSE Mean square error
pIC50 negative log of the IC50 estimate
RMSE Root Mean Square Error
QSAR Quantitative Structure Activity Relationship
Abstract

The pivotal role of organic anion transporting polypeptide 1B1 (OATP1B1) in drug disposition has become clear over the last decade. Therefore an OATP1B1 inhibition assay suitable for use within early Drug Discovery was developed and characterised. IC50 estimates for 10 literature compounds using pitavastatin and estradiol-17β-glucuronide as substrates were within 2-fold of each other. In addition the IC50 estimates using pitavastatin uptake agreed well with literature values (r² = 0.92, average fold error =1.3). However, when estrone-3-sulfate was used OATP1B1 inhibition was underpredicted by as much as 10-fold. A comparison of uptake in human hepatocytes and OATP1B1 inhibition showed a significant correlation (r² = 0.53, P <0.001) for over 40 compounds. These data suggest that for discrete chemical series OATP1B1 inhibition data may be used as a surrogate for more costly and time consuming uptake studies in hepatocytes. OATP1B1 inhibition data determined for over 260 compounds representing both internal AstraZeneca and literature chemistry was also used to generate a continuous in silico model. The robustness of the model was demonstrated by accurately predicting OATP1B1 inhibition for external test sets using 50 AstraZeneca compounds (RMSE = 0.45) and 12 literature drugs (RMSE = 0.32). The most important molecular descriptors for the prediction of OATP1B1 inhibition were maximum hydrogen bonding strength followed by cLogP. This study has shown that a well validated OATP1B1 inhibition assay in conjunction with in silico approaches has the potential to influence significantly the design-make-test cycle and subsequently reduce the propensity of OATP1B1 ligands.
Introduction

The accurate prediction of human pharmacokinetics has been highlighted as an area that required major improvements to avoid significant attrition in early drug discovery (Prentis et al., 1988). To this end DMPK departments have spent considerable effort developing suitable strategies to mitigate drug failure due to sub-optimal human pharmacokinetics (McGinnity et al., 2007; Beaumont and Smith, 2009).

Historically the majority of new chemical entities (NCEs) have been primarily metabolised by cytochrome P450’s (CYPs) and in particular by CYP3A4 (Bertz and Granneman, 1997). However the development of high-throughput in vitro screens (Riley and Grime, 2004) and a greater understanding of the relationship between the physico-chemical properties of new chemical entities and their metabolism (van de Waterbeemd et al., 2001; Wenlock et al., 2003) has significantly reduced CYP-mediated metabolism. Consequently, our progress in understanding, predicting and minimising CYP metabolic liabilities has arguably resulted in an increase in the relative contribution of phase II metabolism and drug transporters to the clearance of NCEs over the last decade (Soars et al., 2002; Mizuno et al., 2003; Shitara et al., 2006; Soars et al., 2009).

The successful in vitro-in vivo translation of hepatic clearance from both human and pre-clinical in vitro tools has become commonplace (McGinnity et al., 2004; Riley et al., 2005; Ito and Houston, 2005) for phase I and phase II metabolism. However, closer inspection of these datasets has highlighted that
many of the outliers are known substrates of hepatic uptake transporters (Soars et al., 2007a). As a result, several hepatocyte-based uptake assays have been developed to accurately predict the clearance of this subset of drugs for which traditional approaches fail (Soars et al., 2007b; Paine et al., 2008).

Arguably the most important superfamily of transporters for the hepatic uptake of anionic drugs is the organic anion transporting polypeptides (OATPs; Hagenbuch and Meier, 2003, 2004). The expression of individual OATPs in mammalian cell lines and their subsequent characterisation against a range of xenobiotics suggests that OATP1B1 and OATP1B3 play a key role in hepatic uptake (Mizuno et al., 2003; Shitara et al., 2006). Furthermore, over the last decade there has been a significant increase in the number of drug-drug interactions (DDIs) attributed to the inhibition of OATP1B1 (Kalliokoski and Niemi, 2009). Cyclosporine has been shown to increase the plasma concentration of bosentan (Binet et al., 2000), repaglinide (Kalliokoski et al., 2008), as well as a number of statins at least in part through an interaction with OATP1B1 (Simonson et al., 2004). The inhibition of OATP1B1 has also been shown to play a role in DDIs involving gemfibrozil and a number of statins, particularly for those which have no CYP2C8 component in their metabolism (Schneck et al., 2004). These clinical data have highlighted the important role that OATP1B1 can play in the disposition of drugs which has prompted the pharmaceutical industry and regulators alike to respond by recommending key transporter studies (Giacomini et al., 2010), which could be adopted early within Drug Discovery.
To this end the aims of this study were three-fold: to develop and characterise an HEK based cell line that stably expressed OATP1B1; to use literature knowledge to develop an OATP1B1 inhibition assay suitable for screening NCEs early in drug discovery; to utilize OATP1B1 inhibition data to generate an *in silico* model which could guide future drug discovery programmes.
Methods and Materials

Chemicals and human hepatocytes

All chemicals and reagents used were of the highest available grade. Montelukast, bosentan, pravastatin, atorvastatin and pitavastatin were sourced from Sequoia Research Products Ltd. (Oxford, UK). [³H]-estrone-3-sulfate (specific activity 2120 GBq/mmol) and [³H]-estradiol-17β-glucuronide (specific activity 1670 GBq/mmol) were obtained from PerkinElmer Life Sciences (Boston, MA, USA). All other chemicals were purchased from Sigma-Aldrich (Poole, Dorset, UK). AZ compounds were synthesized at AstraZeneca R&D Charnwood (Loughborough, UK).

Freshly isolated human hepatocytes were obtained from the UK Human Tissue Bank following appropriate consent and ethical approval (Leicester, UK). Hepatocyte viability was routinely >80%.

Construction of stably transfected HEK293 cells expressing OATP1B1

The OATP1B1 cDNA was cloned into the mammalian expression vector pGenIRESneo (gift from Dr Hazel Weir, AstraZeneca, Macclesfield, UK) using a SpeI/NotI digested insert and Nhel/NotI digested vector. The nucleotide sequence of the cloned cDNA was determined using BigDye v3.1 (PE Applied Biosystems CA, USA) to confirm that the construct expresses OATP1B1 identical to Swissprot Q9Y6L6. Stable expression of OATP1B1 was achieved by transfecting HEK293 cells (American Type Culture Collection, Manassas, VA, USA), which were maintained in Dulbecco's Modified Eagle Medium (DMEM; Sigma) supplemented with 10% foetal calf serum (FCS).
Transfection was carried out using Fugene6 reagent according to the manufacturer's instructions (Roche Diagnostics, Burgess Hill, UK). Forty-eight hours after transfection, the medium was replaced with DMEM/10% FCS containing 1 mg/ml Active geneticin (Invitrogen, Paisley, UK) and the cells grown for 2 weeks to select for antibiotic resistant cells. Monoclonal cells were obtained by limiting dilution cloning.

OATP1B1-HEK uptake assays

OATP1B1-HEK cells and HEK cells transfected with empty vector (pGenIRESneo with no cDNA insert) were grown in DMEM (Invitrogen, Paisley, UK) supplemented with 10% (v/v) foetal bovine serum (Invitrogen), 4 mM glutamine (Invitrogen) and 1 mg/ml geneticin (Invitrogen) at 37 ºC with 5% CO₂ and 95% humidity. Cells were seeded in 12-well plates coated with poly-d-lysine (Becton-Dickinson, Oxford, UK) at a density of 0.45 million cells per well, 24 hours in advance of any uptake assays. Prior to assay, cells were washed 3 times with Krebs-Henseleit buffer pre-warmed to 37 ºC (supplemented with 25 mM HEPES and 2.5 mM CaCl₂). After cells were pre-incubated at 37 ºC for 30 min in Krebs-Henseleit buffer, uptake assays were initiated with the addition of substrate prepared in Krebs-Henseleit buffer. For initial screening assays pitavastatin and [³H]-estradiol-17β-glucuronide were incubated at a final substrate concentration of 1 µM. For kinetic analysis at least seven substrate concentrations were used covering 0.1-100 µM. In all cases the final concentration of dimethyl sulfoxide (DMSO) did not exceed 1% (v/v). Uptake assays were terminated after 1 min (uptake of both pitavastatin and estradiol-17β-glucuronide had been shown to be linear to 1
min previously) via the addition of ice-cold Krebs-Henseleit buffer. Cells were washed a further two times with ice-cold Krebs-Henseleit buffer and left dry.

For uptake studies using radiolabelled substrates, cells were lysed by incubating with 500 μl of 0.1% (v/v) Triton X-100 for 30 min. Following the addition of scintillation cocktail, the amount of radioactivity in the cells was determined using a Packard 2200CA Tri-Carb liquid scintillation counter (Packard Instrument Co, Pangbourne, UK). For uptake studies using pitavastatin as a substrate, cells were lysed by incubating with 500 μl of methanol:acetonitrile (50:50) for 1 min. The samples were placed at -20 ºC for 1 hour and then centrifuged at 2000 g for 15 min. 200 μl of the supernatant was transferred to Agilent 96-well microtitre plates for LC-MS/MS analysis (see below). For protein determinations, unused cells were lysed using 0.1% (v/v) Triton X-100 as stated above with protein concentrations determined using urinary protein as a standard (Randox, Crumlin, UK).

OATP1B1-HEK Inhibition assays

Inhibition assays using OATP1B1-HEK cells were essentially conducted as for uptake studies (see above) except that in addition to assays containing substrate they also contained varying amounts of inhibitor. Initial substrate and inhibitor stocks were prepared in DMSO at 200x the required concentration so that the final concentration of DMSO did not exceed 1% (v/v). For each IC$_{50}$ determination at least 6 inhibitor concentrations were used. For IC$_{50}$ determinations of known OATP1B1 inhibitors the inhibitor concentrations used were selected to span the IC$_{50}$ for AZ compounds the following inhibitor range was used (0.1-25 μM). When pitavastatin or estradiol-
17β-glucuronide were used as substrates the final substrate concentration was 1 μM whereas a final concentration of 0.1μM was used for estrone-3-sulfate. The incubation time was 1 min for all substrates.

Determination of loss from media \textit{CL}_{int, \text{uptake}} using human hepatocytes

Loss from media \textit{CL}_{int, \text{uptake}} estimates were determined as stated previously (Soars et al., 2007b). Briefly, NCE stocks were prepared in DMSO at 100-fold incubation concentration (100 μM). 10 μl of this 100 μM stock was added to a vial containing 490 μl of hepatocyte suspension buffer. A vial containing human hepatocytes at a concentration of 2 million viable cells/ml was pre-incubated for 5 min in a shaking (80 oscillations/min) waterbath at 37°C along with the vial containing the drug/buffer mix. Reactions were initiated by adding 500 μl of hepatocyte suspension to the 500 μl of drug/buffer mix (giving a final substrate concentration of 1 μM at 1% v/v DMSO). Aliquots (80 μl) were removed at 0.5, 1, 2, 4, 6 and 15 min from the incubation and placed into centrifuge tubes. These aliquots were immediately centrifuged at 7000 g for 30 s using a MSE MicroCentaur® centrifuge (Fisher Scientific, Loughborough, UK) and 40 μl of the supernatant was pipetted into 120 μl of ice-cold methanol. Mock time = 0 samples were generated by adding 10 μl of 100 μM stock to 990 μl of hepatocyte suspension buffer from which 40 μl was pipetted into 120 μl of ice-cold methanol. Samples were then frozen for 1 h at −20 °C, and centrifuged at 2000 g for 20 min at 4 °C. The supernatants were removed and analysed as described below.
Analysis of hepatocyte and OATP1B1 inhibition samples containing pitavastatin

Mass spectrometry was conducted on a Micromass Quattro Ultima Platinum triple quadrupole (Waters, Manchester, UK) using a Hewlett Packard 1100 HPLC system (Hewlett Packard, Palo Alto, CA) for separation. Analysis was by multiple reaction monitoring using either positive or negative ion mode. Cone voltage and collision energy were optimised for each compound.

In these analyses, chromatographic separation was achieved using a Hypersil Gold C18 (4.6 x 50 mm, 3 μm) column obtained from ThermoElectron Corp. (Basingstoke, UK) using 10 μl of each sample. The mobile phase consisted of water with 0.1 % (v/v) formic acid with the organic phase being methanol containing 0.1 % (v/v) formic acid. All chromatography was performed using a generic gradient (t = 0 min % organic = 5, t = 0.5 min % organic = 5, t = 2 min % organic = 100, t = 3 min % organic = 100, t = 3.1 min % organic = 5, total runtime = 4 min). The flow rate was set at 1.5 ml/min, which was introduced into the mass spectrometer source at 0.4 ml/min. For kinetics analyses, the amount of each substrate was quantified using authentic standards of known concentration.

Data analysis

Kinetic parameters were determined by nonlinear regression using Microcal Origin 6.0 (OriginLab Corporation, Northampton, MA). The appropriate model (Michaelis-Menten or Hill) used to obtain the kinetic constants was determined by comparing the randomness of the residuals, the size of the sum of the
squares of the residuals and the standard error of the parameter estimates. For each substrate concentration the initial uptake rate was calculated by subtracting the initial rate determined in HEKs transfected with empty vector from those obtained in HEKs stably expressing OATP1B1.

For IC_{50} determinations, the initial uptake rate at each inhibitor concentration was calculated by subtracting the initial uptake rate of substrate alone determined in HEKs transfected with empty vector from those obtained in HEKs stably expressing OATP1B1. Values were also corrected for any protein differences between HEKs transfected with empty vector or OATP1B1. IC_{50} values were determined by non-linear regression analysis (WinNonlin™, Pharsight Corporation, North Carolina, USA). IC_{50} values were converted to K_i estimates for literature comparison by rearranging the equation 1:

1) IC_{50} = K_i \times (1 + ([S]/K_m))

CL_{int, uptake} was estimated from hepatocyte uptake assays using equation 2:

2) CL_{int, uptake} = V \times k

Where V is the incubation volume (corrected for non-specific binding-see below) and k is the elimination rate constant. Non-specific binding was determined as the difference in drug concentration between the 0 and 0.5 min time-point. Therefore, the elimination rate concentration was calculated from the initial linear phase from log concentration-time plots starting from the 0.5 min time-point using typically 4 to 5 time points. This method was also used
for compounds exhibiting a biphasic profile. Although this represents a potential composite of uptake and metabolism, curve stripping produced similar results for a representative set of compounds (data not shown).

Development of an in silico model for the prediction of OATP1B1 inhibition

Dataset

One of the aims of this study to develop an *in silico* method that could be utilized within the company in order to assess the propensity for compounds to be OATP1B1 substrates by inference from their ability to act as inhibitors in HEK cells. Data was generated on multiple AstraZeneca sites with compounds from multiple projects which enhanced the chemical diversity of the dataset and increased the applicability of any generated model across the whole company.

The data set in total consisted of 263 compounds with 201 compounds used in the training set and 50 compounds randomly selected to act as the test set. The test set covered the dynamic range of the dataset which ranges from pIC$_{50}$ 4.3 to pIC$_{50}$ 7.0

A further test set of 12 compounds, losartan, telmesartan, atorvastatin, benazepril, fluvastatin, cerivastatin, irbesartan, valsartan, enalapril, pravastatin, simvastatin and perindopril was used to further test the external predictivity of the model (Supplemental Table 2). These 12 compounds, predominantly from the cardiovascular therapeutic area, have been well characterised in the literature and are known to inhibit OATP1B1 to varying degrees.
The properties of the compounds used to generate the in-silico model are summarised in Figure 1. The lipophilicity for these compounds ranged from -0.5 to over 7 with a mean lipophilicity of 4.1. The range in molecular weight was from 290 to 760 with a mean of 468 and the polar surface area ranged from 41 to 223 with a mean of 103. This range in physical properties coupled with compounds that were selected from a range of AstraZeneca projects gives a set of compounds with a diverse structural and physical property profile. This dataset was then considered appropriate to build an in-silico model with as wide an applicability as was available at this time (Supplemental Table 1).

Modeling

Molecular descriptors

The AstraZeneca in house descriptor set was used to describe the molecules for the development of the in-silico model. This set consisted of 143 descriptors which encode information regarding the topological, geometrical, electronic and physical properties of each compound. For details of this descriptor set see Bruneau (2001).

The freely available statistical package R (R Development Core Team 2006) was used to build random forest models using the continuous pIC₂₅₀ data for OATP1B1 inhibition. The random forest methodology is described by Svetnik et al., (2003) but can briefly explained as following.

The random forest algorithm generates a predictive model by using a set of binary rules to calculate a target value. The algorithm is termed an ensemble method because it combines the results from many (200 in this case) different models to generate a single result. It has been demonstrated that the
prediction accuracy from an ensemble model is usually better than the results from one of the individual models, see Dietterich (2002).

The random forest algorithm is initially provided with the training data and for each of the models generated the original training data is split by randomly selecting approximately 2/3 of the data with replacement. This process of splitting or sampling the data is termed bootstrapping. The remaining 1/3 of the data, termed the out-of-bag (OOB) data, and is used to estimate the error in the model and the importance of each variable towards the overall model.

For each bootstrapped sample (approximately 2/3 of the original data) a regression tree is generated with the modification that the best split is chosen using a random selection of the variables rather than the whole descriptor set. The assignment of a single prediction for a given compound is made by taking the average prediction form all the models generated.

Evaluation of model predictivity

Ideally the predictivity of any in silico method would be addressed by a large external test set. However this is an emerging area of science and a high volume of quality experimental data was not available. In situations such as this all available methods available to these authors were used to generate confidence in the model.

Out-Of-Bag (OOB) error

The OOB error utilises the bootstrapping process of tree building and involves sampling of the training data. During this process some compounds were left out the sample set while others were repeated. Each tree was grown with
approximately 2/3 of the original data set while 1/3 of the training set could be utilized in the OOB estimate. Since the OOB samples were not used to construct the tree they can be utilized in the estimate of the model prediction accuracy in a similar way to an external test set. An estimate for the mean square error (MSE) of the random forest regression method employed in this work is given by equation 3.

\[
MSE \approx MSE^{OOB} = n^{-1} \sum_{i=1}^{n} [\hat{y}^{OOB}(X_i) - y_i]^2
\]

Where \(\hat{y}^{OOB}(X_i)\) is the ensemble prediction value for each training sample \((X_i)\), \(n\) is the number of compounds in the training set and \(y_i\) is the experimentally determined value.

Root mean square error (RMSE)

A further estimate of the model predictivity can be assessed by the RMSE of both the external test set consisting of 50 internal AstraZeneca compounds and also the external test set consisting of 12 literature compounds. The RMSE is calculated as in equation 4

\[
RMSE = \left\{ \frac{\sum (y - x)^2}{n} \right\}^{(1/2)}
\]

Equation 4
Estimation of Descriptor importance

Random forest models are an ensemble of individual models and hence do not produce an explicit model which can be easily interpreted. Understanding the relationship between the descriptors that contribute towards OATP1B1 inhibition is essential if the model is to be used in the design-make-test cycle of any drug discovery programme. It is, however, possible to estimate the contribution of each descriptor to the overall model prediction accuracy by replacing each descriptor with random noise. If the model prediction accuracy deteriorated as a consequence of a descriptor being replaced with noise then that descriptor was contributing significantly to model performance. When the random forest algorithm was used in regression, as was the case in this work, the importance of each descriptor was estimated using the OOB dataset. Each descriptor in the OOB dataset was randomly permuted and then predicted by the tree. The increase in the least squared prediction accuracy was used to estimate the importance of each descriptor.
Results

Characterisation of OATP1B1-HEK substrate specificity

Kinetic analyses for the prototypic OATP1B1 substrates pitavastatin and [3H]-estradiol-17β-glucuronide were conducted in the OATP1B1-HEK cell line to confirm that uptake was consistent with that obtained in the literature and to determine \(K_m \) estimates to enable their use as potential substrates in an inhibition assay. The OATP1B1 mediated uptake was determined by subtracting the initial rates (1 min) obtained with empty vector cells from that obtained for HEK cells transfected with OATP1B1 at each substrate concentration. Representative plots for pitavastatin and [3H]-estradiol-17β-glucuronide are shown in Figures 2A and 2B respectively. Figures 2A and 2B show that the initial rates of uptake for both pitavastatin and estradiol-17β-glucuronide were saturated at concentrations up to 100 \(\mu M \) and that the data were adequately fitted using a simple Michaelis-Menten model. The \(K_m \) value of 4.8 ± 0.7 \(\mu M \) obtained for pitavastatin agreed well with that cited previously in the literature (3 \(\mu M \); Hirano et al., 2004). The \(K_m \) obtained for [3H]-estradiol-17β-glucuronide (3.6 ± 0.9 \(\mu M \)) was also consistent with the range observed in the literature (3.7-8.2 \(\mu M \); König et al., 2000; Tamai et al., 2001; Cui et al., 2001). Since a non-radiolabelled endpoint is more cost effective and easier to use within early drug discovery pitavastatin was chosen as a substrate for further inhibition studies.
Validation of OATP1B1 inhibition assay

To confirm that pitavastatin was an appropriate substrate to use in an OATP1B1 inhibition assay, a comparison with known OATP1B1 inhibitors was instigated. A search of the literature highlighted 10 compounds with known Ki values against OATP1B1 ranging from 0.2 μM for cyclosporin A to 52 μM for verapamil. A comparison of the Ki values determined in the literature with those obtained using the AZ OATP1B1 inhibition assay is shown in Figure 3. The correlation obtained (r² = 0.92, afe 1.3) confirms that this cell line can distinguish between weak and potent literature inhibitors of OATP1B1.

To investigate any potential inter-substrate differences in OATP1B1 inhibition IC50 estimates were obtained for eight known OATP1B1 inhibitors using pitavastatin, estradiol-17β-glucuronide and estrone-3-sulfate as substrates (see Table 1). The IC50 determinations obtained using pitavastatin and estradiol-17β-glucuronide as substrates were within 2-fold of each other for the majority of compounds investigated. When estone-3-sulfate was used as a substrate the results were more variable (see Table 1). The IC50 values obtained for the potent OATP1B1 inhibitor cyclosporin A were comparable using either of the three substrates however the IC50 estimates determined for ritonavir and glibenclamide were up to ~5-10 fold higher than those obtained using either pitavastatin or estradiol-17β-glucuronide as substrates.
Utility of OATP1B1 inhibition as a surrogate for human hepatic uptake assays

A set of AZ and literature compounds shown previously to be uptake substrates in human hepatocytes (see Soars et al., 2007b) were investigated in the OATP1B1 inhibition assay (see Figure 4). For several discrete series of AZ compounds there was a statistically significant relationship between hepatic uptake rate assessed by human hepatocytes and OATP1B1 inhibition. A similar trend was also apparent for the more limited set of literature compounds (N = 4) which had been included in these studies. Although for each of the three datasets hepatic uptake increased (lower 1/CL_{int, uptake}) with an increase in OATP1B1 inhibition (lower IC_{50}) the relationship for the literature compounds investigated was offset from that observed for the AZ chemistries. Essentially for a given CL_{int, uptake} the OATP1B1 IC_{50} was on average 5-fold lower for the literature compounds than for each of the AZ series, which may indicate differential selectivity for OATPs and/or passive permeability.

Development and characterisation of an OATP1B1 inhibition in silico model

A single computational model was developed using the random forest algorithm and a descriptor set which covered topological, electronic, geometric and the physical properties of each compound. Figure 5A shows the correlation between experimentally determined inhibition of OATP1B1 and the predicted inhibition based on the random forest model. The statistics of the model in training are good, as is expected given the nature of the random forest algorithm, and result in an RMSE of 0.2. An assessment of the external predictivity of the model was obtained by calculating OATP1B1 inhibition
estimates for a further set of 50 in house AstraZeneca compounds (overlaid in Figure 5B). For this external test set the model performed well over a pIC$_{50}$ range from 4.1 to 6.8 producing an RMSE of 0.45. Although the model was built using AstraZeneca compounds, Figure 6 shows the capability to predict accurately (RMSE = 0.32) the inhibition of OATP1B1 for a series of 12 literature compounds with pIC$_{50}$ values ranging between 4.5 to 6.3. This series of compounds represents a further external estimate of the accuracy in predicting OATP1B1 inhibition using the random forest model.

A summary of the statistics for this model together with an assessment of the accuracy in predicting OATP1B1 inhibition is given in Table 2. In addition to using an RMSE for both the in house and literature external datasets (see Table 2) an OOB error, which is a form of cross validation available within the R software, was also used resulting in an RMSE of 0.23. The consistently low error rate obtained using each of these three approaches adds confidence in the robustness of the OATP1B1 inhibition model.

Key descriptors in the OATP1B1 in silico model

Figure 7 shows the 24 most important descriptors contributing to the random forest model as assessed by the increase in MSE after randomising each descriptor. The most important descriptor is the maximum hydrogen bonding strength followed by the cLogP of the compounds. The next 5 descriptors are the molecular mechanics descriptors relating to the general hydrogen bonding potential of the compound and further strengthen the importance of this property in the determination of affinity at OATP1B1.
Discussion

Over the last ten years the number of DDI’s involving drug transporters has increased significantly (Kindla et al., 2009). This has prompted the drug industry and regulators alike to highlight how in vitro transport assays could be used to mitigate/inform clinical DDI studies (Giacomini et al., 2010). The development and characterisation of robust transport assays such as the OATP1B1 inhibition assay described here are therefore pivotal to provide early assessments of DDI potential.

The importance of using more than one substrate in inhibition assays to get an accurate assessment of inhibitory potential has been highlighted for enzymes which have multiple binding sites or modes such as CYP3A4 (Kenworthy et al., 1999). The differences in IC\textsubscript{50} values observed in this study when using estone-3-sulfate as a substrate compared to pitavastatin/estradiol-17\beta-glucuronide (see Table 1) suggest that care should be taken when selecting a probe for OATP1B1 inhibition assays. An under-prediction in the inhibition of OATP1B1 with gemfibrozil has been observed previously by Noé et al., (2007) when estone-3-sulfate has been used as a substrate. Subsequent analysis showed that estrone-3-sulfate kinetics in OATP1B1 cells were most accurately described by a two-site model and this was attributed to OATP1B1 containing at least two binding sites. Further evidence for multiple binding sites has been obtained with mutation studies (Miyagawa et al., 2009). The relevance of OATP1B1 inhibition data generated using pitavastatin as a substrate has been highlighted by Hirano et al., (2006) who showed that these data could be used to predict in vivo interactions mediated...
via OATP1B1. While pitavastatin has been selected as a easily to use and cost effective probe for OATP1B1 inhibition studies in early drug discovery it should be noted that [\(^{3}\text{H}\)]-estradiol-17\(\beta\)-glucuronide has also been used successfully in a drug development setting (Sharma et al., 2010).

The emerging relationship between hepatic uptake in human hepatocytes and OATP1B1 inhibition for several series of AZ compounds (see Figure 4) suggests a further potential application of OATP1B1 inhibition data. Clearly, such a relationship implies that the compounds investigated in this study interact competitively at a single OATP1B1 binding site. Exceptions may be anticipated for compounds which bind non-competitively or demonstrate mixed type inhibition. Nevertheless, the potential exists to facilitate rapid decision-making in Drug Discovery using such an early, indirect assessment to prioritise those compounds studied in a more time-consuming and expensive, functional hepatic uptake assay as initially recommended for other drug transporters eg. PgP/MDR1 (Schwab et al, J Med Chem 2003: 46: 1716-1723. Further work is required in this area to build on these findings.

The current OATP1B1 inhibition in silico model has been developed using a set of descriptors that describe the topological, electronic, geometric and physical properties of the test compounds. The ability of the model to discriminate between active and inactive compounds plays a critical part in the design-make-test cycle guiding design teams to optimise the interaction between NCEs and OATP1B1.
The model performs well in predicting an external test set of 50 in house AstraZeneca compounds where the RMSE in prediction is 0.43 together with literature test set of 12 compounds for which the RMSE is 0.30. The key descriptors for increasing OATP1B1 inhibition as determined from this in-silico models are to increase the hydrogen bond accepting strength and increase the lipophilicity. The key molecular features identified in this 2D QSAR approach are consistent with the work of Chang et al., (2005) who, using a 3D pharmacophore approach, also identified hydrogen bond accepting and hydrophobicity as key features in OATP1B1 inhibition. These key interactions are further substantiated by Gui et al., (2009) who, using a CoMFA approach, identified hydrophobicity and basicity of the side chain residues as being critical for OATP1B1 inhibition. Bodalo et al., (2010) investigated the ability of 179 compounds to inhibit the uptake of estradiol-17β-glucuronide in human hepatocytes to develop a structure–activity relationship for OATP1B1/1B3. Again lipophilicity, polarity, pKa and the number of hydrogen bond donors and acceptors were shown to play a critical role in determining the molecular interactions with the OATP1B1/1B3. More recently the work of Karlgren et al (2011) showed that OATP1B1 inhibitors tend to be more lipophilic, be larger and display a larger polar surface area (PSA) than non-inhibitors.

This report has highlighted the importance of robustly characterising a cell line (in this case OATP1B1) before it is used as a primary inhibition screen. By analysing over 250 compounds in an OATP1B1 inhibition assay it has been possible to develop the first continuous QSAR model that can accurately
predict OATP1B1 inhibition for internal and literature compounds alike. Future efforts to build robust in silico models for key transporter isoforms will further enhance our ability to optimise transporter interactions in early drug discovery.
Authorship Contributions

Participated in research design: Soars, Barton, Ismair, Riley

Conducted experiments: Soars, Ismair

Contributed new reagents or analytic tool: Jupp

Performed data analysis: Barton

Wrote or contributed to the writing of the manuscript: Barton, Soars, Jupp, Riley
References

Noé J, Portmann R, Brun ME and Funk C (2007) Substrate-dependent drug-drug interactions between gemfibrozil, fluvastatin and other organic anion-
transporting peptide (OATP) substrates on OATP1B1, OATP2B1, and OATP1B3. *Drug Metab Dispos* 35: 1308-1314.

R Development Core Team 2006 Version 2.7.1 (Windows), Available from: http://www.r-project.org/index.html

Yamashiro W, Maeda K, Hirouchi M, Adachi Y, Hu Z and Sugiyama Y (2006) Involvement of transporters in the hepatic uptake and biliary excretion of...
valsartan, a selective antagonist of the angiotensin II AT1-receptor, in humans. Drug Metab Dispos 34: 1247-1254.

Figure Legends

Figure 1 The frequency distribution of the molecular properties of the compounds used to build the in-silico model for OATP1B1 inhibition. The distribution of (a) Clog P (b) Molecular weight (c) Polar Surface area (PSA)

Figure 2 Determination of pitavastatin (A) and estradiol-17β-glucuronide (B) kinetics using HEK cells stably expressing OATP1B1

At least seven substrate concentrations were used in each kinetic determination. For each substrate concentration the initial uptake rate was calculated by subtracting the initial rate determined in HEKs transfected with empty vector from those obtained in HEKs stably expressing OATP1B1. Kinetic estimates are the mean ± SD of three separate experiments.

Figure 3 Comparison of Ki estimates determined using OATP1B1 mediated OATP1B1 uptake of pitavastatin with literature values

Ki estimates were determined using the inhibition of OATP1B1 mediated pitavastatin uptake at 1 μM. Six inhibitor concentrations were used in each determination and each data point represents the mean ± SD of at least three experiments. Literature data was sourced from Chen et al., 2005 and Hirano et al., 2006. The solid line represents a regression analysis (line of best fit is given by y = 0.87x + 0.14, r² = 0.92, afe = 1.3).
Figure 4 Relationship between the inhibition of OATP1B1 mediated uptake and CL\textsubscript{int, uptake} determined in human hepatocytes for several chemically distinct series of AZ compounds (closed symbols) and four literature compounds (open symbols). IC\textsubscript{50} estimates were determined using the inhibition of OATP1B1 mediated pitavastatin uptake at 1 μM. Six inhibitor concentrations were used in each determination. CL\textsubscript{int, uptake} was determined using human hepatocytes via a media loss incubation. Each data point is the mean of at least two separate experiments. The solid lines represent a regression analysis (equations given by y = 0.78x – 1.82, r2 = 0.95, p < 0.05 for literature compounds and y = 0.85x – 2.60, r2 = 0.53, p < 0.01 for AZ compounds).

Figure 5(a) Relationship between the Predicted inhibition of OATP1B1 mediated uptake of pitavastatin and Observed Inhibition based upon Random Forest model (b) external test set overlaid on training set

Figure 6 Relationship between the Predicted inhibition of OATP1B1 mediated uptake of pitavastatin and Observed Inhibition base upon Random Forest model for a series of literature compounds

Figure 7 Key properties of Random Forest model
Descriptor importance based upon the increase in means square error when the descriptor is replaced with random noise
Table 1 Effect of substrate on OATP1B1 inhibition

Data represent individual experiments or mean ± SD of three experiments

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>Pitavastatin</th>
<th>Estradiol-17β-Glucuronide</th>
<th>Estrone-3-Sulfate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IC₅₀ (mM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atorvastatin</td>
<td>0.8 ± 0.3</td>
<td>0.6, 0.8</td>
<td>1.6, 2.4</td>
</tr>
<tr>
<td>Gemfibrozil</td>
<td>38 ± 2</td>
<td>11, 44</td>
<td>130, 270</td>
</tr>
<tr>
<td>Glibenclamide</td>
<td>2.2 ± 0.7</td>
<td>1.4, 1.4</td>
<td>21, 25</td>
</tr>
<tr>
<td>Verapamil</td>
<td>64 ± 15</td>
<td>32, 71</td>
<td>>600, >600</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>6 ± 3.3</td>
<td>4.4, 5.6</td>
<td>11, 14</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>2.2 ± 1.4</td>
<td>0.3, 0.9</td>
<td>2.3, 3</td>
</tr>
<tr>
<td>Ritonavir</td>
<td>1 ± 0.5</td>
<td>0.7, 1</td>
<td>8.6, 5</td>
</tr>
<tr>
<td>Cyclosporin A</td>
<td>0.7 ± 0.2</td>
<td>0.7, 1.1</td>
<td>1.3, 1.2</td>
</tr>
</tbody>
</table>
Table 2 Data set information and model summary statistics

<table>
<thead>
<tr>
<th>Dataset Type</th>
<th>Number of Compounds</th>
<th>RMSE</th>
<th>OOB Error (MSE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Set</td>
<td>212</td>
<td>0.2</td>
<td>0.23</td>
</tr>
<tr>
<td>Test Set</td>
<td>50</td>
<td>0.45</td>
<td>-</td>
</tr>
<tr>
<td>Literature Test Set</td>
<td>12</td>
<td>0.3</td>
<td>-</td>
</tr>
</tbody>
</table>
Figure 2A

Initial rate (pmol/min/mg protein) vs. [Pilavastatin] uM

\[V_{\text{max}} = 450 \pm 40 \text{ pmol/min/mg} \]

\[K_m = 4.8 \pm 0.7 \text{ \mu M} \]
Figure 2B

Initial rate (pmol/min/mg protein)

\[V_{\text{max}} = 200 \pm 14 \text{ pmol/min/mg} \]
\[K_m = 3.6 \pm 0.9 \mu M \]
Figure 3
Figure 6
Figure 7