Pharmacogenomics of Gemcitabine Metabolism: Functional Analysis of Genetic Variants in Cytidine Deaminase and Deoxycytidine Kinase

Jessica A. Roseberry Baker, Enaksha R. Wickremsinhe, Claire H. Li, Olukayode A. Oluyedun, Anne H. Dantzig, Stephen D. Hall, Yue-wei Qian, Barbara J. Ring, Steven A. Wrighton and Yingying Guo

Drug Disposition (JAB, EW, OAO, CL, BJR, SAW, SDH, YG), Oncology (AHD), Translational Sciences (YQ) of Eli Lilly and Company, Indianapolis, IN
Running Title Page

Running title: *In Vitro* Gemcitabine Pharmacogenomics

Correspondence: Yingying Guo, PhD, Drug Disposition of Eli Lilly and Company, Drop Code 0714, Indianapolis, IN, 46285, USA

Telephone: (317) 277-4324 **Fax:** (317) 655-1184 **E-mail:** guoying@lilly.com

Number of text pages: 15

Tables: 1

Figures: 1

References: 17

Words in Abstract: 235

Words in Introduction: 470

Words in Results and Discussion: 1491

Abbreviations:

Ara-C, cytarabine; Ara-CMP, cytosine β-D-arabinofuranoside-5'-MP; gemcitabine, dFdC, 2',2'-difluorodeoxycytidine; CDA, cytidine deaminase; DCK, deoxycytidine kinase; dFdU, 2',2'-difluorodeoxyuridine; dFdCMP, dFdC monophosphate; dFdCTP, dFdC triphosphate; dFdUMP, dFdU monophosphate, 2'-deoxy-2',2'-difluorouridine-5' monophosphate; dFdUTP, dFdU triphosphate; WT, wild-type; SNP, single nucleotide polymorphism; BSA, bovine serum albumin; HIS, histidine; IS, internal standard; LD, linkage disequilibrium.
Abstract

Gemcitabine (dFdC) is metabolized by cytidine deaminase (CDA) and deoxycytidine kinase (DCK) but the contribution of genetic variation in these enzymes to the variability in systemic exposure and response observed in cancer patients is unclear. Wild-type (WT) enzymes and variants of CDA (Lys27Gln and Ala70Thr) and DCK (Ile24Val, Ala119Gly, and Pro122Ser) were expressed in and purified from \textit{E. coli} and enzyme kinetic parameters estimated for cytarabine (ara-C), dFdC and its metabolite 2’,2’-difluorodeoxyuridine (dFdU) as substrates. All three CDA proteins showed similar \(K_m\) and \(V_{\text{max}}\) for ara-C and dFdC deamination, except for CDA70Thr which had a 2.5-fold lower \(K_m\) and 6-fold lower \(V_{\text{max}}\) for ara-C deamination. All four DCK proteins yielded comparable metabolic activity for ara-C and dFdC monophosphorylation, except for DCK24Val which demonstrated an approximately 2-fold increase (\(p<0.05\)) in the intrinsic clearance of dFdC monophosphorylation due to a 40\% decrease in \(K_m\) (\(p<0.05\)). DCK did not significantly contribute to dFdU monophosphorylation. In conclusion, the Lys27Gln substitution does not significantly modulate CDA activity towards dFdC and therefore would not contribute to inter-individual variability in response to gemcitabine. The higher \textit{in vitro} catalytic efficiency of DCK24Val towards dFdC monophosphorylation may be relevant to dFdC clinical response. The substrate-dependent alterations in activities of CDA70Thr and DCK24Val \textit{in vitro} were observed for the first time, and demonstrate that the \textit{in vivo} consequences of these genetic variations should not be extrapolated from one substrate of these enzymes to another.
Introduction

The deoxycytidine analog, gemcitabine [2’,2’-difluorodeoxycytidine (dFdC)] is active towards numerous solid tumor types but has a narrow-therapeutic index and variable responses ranging from lack of efficacy to severe cytotoxicity, which may be attributed to variability in drug exposure. Genetic variation of cytidine deaminase (CDA) and deoxycytidine kinase (DCK) may help explain the variable response due to their important roles in dFdC metabolism. Appropriate genotyping may provide much needed biomarkers for optimizing patient care (Ciccolini et al., 2011). Greater than 90% of an IV dose of dFdC is metabolized by CDA to its inactive metabolite 2’,2’-difluorodeoxyuridine (dFdU). dFdC is phosphorylated by DCK to its monophosphate (dFdCMP) and subsequently to the active triphosphorylated form (dFdCTP) that gets incorporated into DNA and leads to apoptosis. Cells lacking DCK activity are resistant to the dFdC cytotoxicity (Mini et al., 2006). Additionally, dFdU was reported to form dFdUMP via direct phosphorylation (Veltkamp et al., 2008), but it is unknown whether DCK is involved (Supplemental Figure 1). Understanding the regulation of dFdUMP is important since dFdUMP may lead to DNA damage by inhibiting thymidylate synthase (Mini et al., 2006).

Numerous single nucleotide polymorphisms (SNPs) of CDA and DCK have been identified, but their impact on dFdC clinical response is not well understood. These polymorphisms include two nonsynonymous SNPs in CDA, 79A>C (Lys27Gln) and 208G>A (Ala70Thr), and three nonsynonymous SNPs in DCK, Ile24Val, Ala119Gly, and Pro122Ser (Kocabas et al., 2008; Deenen et al., 2011). The haplotypes harboring 79A>C and 208G>A were designated CDA*2 and CDA*3, respectively. The effects of the 208G>A mutation on clinical outcomes to dFdC treatment have been demonstrated (Deenen et al., 2011). However, conflicting data exist on the association of the CDA 79A>C mutation with response. In comparison to the C-
allele (Gln27) carriers, the CDA79A allele (Lys27) has been associated with significantly decreased, increased or comparable deaminase activity, suggested by clinical outcomes or dFdC pharmacokinetics (Deenen et al., 2011). On the other hand, the Pro122Ser variant of DCK was not associated with the dFdC treatment outcomes in 107 malignant mesothelioma patients (Erculj et al., 2012), although it was associated with decreased DCK expression and activity in vitro (Kocabas et al., 2008).

In vitro functionality assay data help clarify the functional consequences and elucidate the role of these nonsynonymous SNPs as potential predictive pharmacogenomics biomarkers for dFdC. However, previous in vitro studies addressed the direct effects of some of these variants on dFdC metabolism using crude cell extracts, which may be confounded by other enzymes with overlapping substrate specificities (Gilbert et al., 2006; Kocabas et al., 2008). Additionally, the effects of Ala70Thr substitution on the CDA catalytic activity for dFdC or the role of DCK in dFdU metabolism is unknown. The current study employed purified recombinant enzymes of these nonsynonymous SNPs of CDA and DCK to better understand their impact on dFdC using in vitro comparative kinetic studies.

Materials and Methods

Materials. dFdC, dFdU, dFdCMP, 2’-deoxy-2’,2’-difluorouridine-5’ monophosphate (dFdUMP), di-lithium dFdU, and $[^{13}C_4^{15}N_2]$ dFdU were synthesized at Eli Lilly and Company (Indianapolis, IN). The following reagents were obtained commercially: Ara-CMP (cytosine β-D-arabinofuranoside-5’-MP, Moravek Biochemicals, Brea, CA), cytarabine-^{13}C, $^{15}N_2$ 5’-monophosphate (Santa Cruz Biotechnology, Santa Cruz, CA), tris acetate buffer (Teknova, Hollister, CA), tris-HCl buffer (Invitrogen, Carlsbad, CA). The following were obtained from Sigma Aldrich (St. Louis, MO): Ara-C (cytarabine), ara-U (arabinofuranosyl uridine), KCl,
MgCl₂, ATP-Mg, cytidine 5’-monophosphate, thymidine 3’-monophosphate sodium salt and bovine serum albumin (BSA).

Expression and Purification of Human Recombinant CDA and DCK Variants. A cDNA clone of wild-type (WT) CDA (NM_001785.2) was obtained from Open Biosystems (Lafayette, CO) (Clone ID: LIFESEQ2746466, Catalog No. IHS1380-97652440) and CDA variants were subsequently generated using PCR-based mutagenesis. Full-length cDNAs encoding DCK-WT (NM_000788.2) and variants of interest were synthesized (Gene Oracle, Mountain View, CA). All the CDA clones were inserted into pET21d (Novagen, Darmstadt, Germany) with N-terminal HIS-SUMO fusion, and all the DCK clones into pET21d with N-terminal histidine (HIS) tag (Invitrogen). Bacterial BL21(DE3)pLysS (Novagen) was used as an expression host, and the induction of protein expression was carried out with 0.5 mM IPTG at 18°C overnight. All proteins were purified using Ni-NTA agarose according to the standard protocol (Qiagen, Valencia, CA) followed by size-exclusion chromatography on a HiLoad 16/60 Superdex 200 column (GE Healthcare Biosciences, Piscataway Township, NJ). The HIS-tagged DCK proteins were eluted in the storage buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 2 mM DTT, 10% glycerol) and stored at -80°C. The SUMO-CDA fusion protein was further digested with SUMO protease (Invitrogen) to generate untagged CDA protein which was subsequently purified using ion exchange chromatography on a Mono Q 10/100GL column (GE Healthcare Biosciences). The purified CDA proteins were stored in buffer (50 mM Tris-HCl, pH 8.0, 200 mM NaCl, 1 mM DTT, 10% glycerol) at -80°C. Protein concentration were determined by the Bradford assay using BSA as standard. Protein identities of CDA and DCK were confirmed by N-terminal sequencing and matrix-assisted laser desorption/ionization, respectively. Enzyme purity and
molecular mass were determined by SDS-PAGE, and visualized by Coomassie blue staining (Invitrogen).

Molecular Weight Estimation and Zinc Content Analysis in CDA. The molecular mass of the recombinant CDAs was determined by gel filtration fast protein liquid chromatography system, and the zinc content of CDA proteins was quantified with inductively coupled plasma optical-emission spectrometry, as described previously (Vincenzetti et al., 1996).

In Vitro Kinetics Studies. For the incubations with CDA proteins, the final reaction mixtures (100 μl) consisted of 50 mM Tris acetate buffer (pH 7.4), substrate (ara-C: 20-2560 μM, or dFdC: 15.63-2000 μM), BSA, and recombinant CDA proteins (Miwa et al., 1998). Substrates were pre-incubated in Tris buffer for approximately 3 minutes at 37°C and reactions were then initiated with the addition of expressed CDA protein (0.1 μg) and BSA (0.05 mg), and incubated for 1 minute at 37°C reflecting linear rate conditions.

For the incubations with DCK proteins, the final reaction mixtures (100 μl) consisted of 50 mM Tris-HCl buffer (pH 7.5), 100 mM KCl, 5 mM MgCl₂, 1 mM ATP-Mg, substrate and recombinant DCK proteins (Sabini et al., 2003). When examining the metabolism of dFdC to dFdCMP or ara-C to ara-CMP, substrate (dFdC or ara-C: 0.156-320 μM) was pre-incubated with buffer for approximately 3 minutes at 37°C. Reactions were then initiated with the addition of DCK enzyme (40 to 100 ng), and incubated for 1 minute (dFdC) or 3 minutes (ara-C) at 37°C reflecting linear rate conditions. Incubations designed for the dFdU to dFdUMP conversion were carried out under the same conditions except that reactions were initiated with the addition of 4 ng of DCK-WT and incubated with a range of dFdU concentrations (7.8-500 μM) for 10 minutes at 37°C.
All the incubations were stopped by adding 100 μl acetonitrile containing appropriate internal standard (IS), and centrifuged to remove denatured protein. The supernatant was subjected to LC-MS/MS analysis using methods described in the Supplemental Table 1.

Data Analysis. The estimation of enzyme kinetic parameters was conducted by nonlinear regression (WinNonlin, Pharsight Ltc.) using the best-fit model and the intrinsic clearance (Cl_{int}) was calculated as V_{max}/K_m. Comparisons of kinetic parameters between individual variant and WT were made using one-way analysis of variance followed by the Dunnett's t-test. Statistical significance of kinetic parameter differences between enzymes was defined as p < 0.05.

Results and Discussion

Expressed recombinant proteins of CDA (WT, Lys27Gln, and Ala70Thr) and DCK (WT, Ile24Val, Ala119Gly, and Pro122Ser) used in this study were characterized and validated:

1) The purity of all proteins was >90%, as demonstrated by the major band at an expected size of 16 KDa (CDAs) (Vincenzetti et al., 1996) and 30.5 KDa (DCKs) (Sabini et al., 2003) on SDS-PAGE (Supplemental Figure 2).

2) The patterns of Michaelis-Menten and substrate inhibition kinetics exhibited by all CDA and DCK proteins (Figure 1 and Table 1), respectively, towards the prototypical substrate ara-C were similar to other studies (White and Capizzi, 1991; Laliberte et al., 1992). The K_m values of 138 μM in CDA-WT and 3.04 μM in DCK-WT for ara-C (Table 1) were consistent with previous reports, which were 140-169 μM (Laliberte et al., 1992; Yue et al., 2003) and 1.3-15.5 μM (White and Capizzi, 1991; Sabini et al., 2003), respectively, for CDA and DCK.

3) The physicochemical properties of these three CDA proteins were shown to be comparable. All three CDA proteins were found to have a major peak at an estimated size of 57 KDa by gel filtration methods, suggesting comparable levels of tetrameric enzyme components among the three allelic variants (data not shown). In the zinc content assay, a 1 mol zinc/mol of...
subunit for each of the three CDA proteins was observed, as expected, indicating an identical level of incorporated zinc within each of the variants. 4) In the current study, only the K_m and V_{max} values for CDA70Thr were approximately 2.5- and 6-fold lower ($p<0.05$), respectively, than those of the CDA-WT, which caused a 2.5-fold decrease in the catalytic efficiency of ara-C deamination (Figure 1 and Table 1). Therefore, the relative order of catalytic activities among the three CDA variants for ara-C ($\text{WT} = \text{CDA27Gln} > \text{CDA70Thr}$) was similar to previous studies (Yue et al., 2003; Vincenzetti et al., 2004).

The effects of the three CDA variants on the kinetics of deamination of dFdC were investigated. The formation of dFdU from dFdC yielded Michaelis-Menten kinetics for all three CDA variants, consistent with a single enzyme responsible for the conversion of dFdC to dFdU (Figure 1). Furthermore, in contrast to ara-C, for which CDA70Thr demonstrated reduced activity, all three CDA variants exhibited similar K_m and V_{max} for dFdC conversion to dFdU (Table 1), suggesting that they have similar binding affinity and deamination efficiency for dFdC.

One major finding from this study was that the CDA Lys27Gln substitution alone does not appear to be a significant contributor to alterations in CDA activity towards dFdC; Lys27Gln did not affect CDA kinetics in our study, and an earlier study demonstrated this amino acid change does not impact CDA protein expression as shown by immunoblots (Gilbert et al., 2006). However, our CDA kinetic result differs from Gilbert et al., which reported a modest K_m value increase in CDA27Gln (397 ± 40 µM) relative to the WT (289 ± 20 µM) for dFdU formation (Gilbert et al., 2006). Purified proteins were used in this study to exclude the interference of other enzymes with overlapping substrate specificities, as opposed to the crude cell extracts from transiently over-expressed COS-1 cells utilized by Gilbert et al. (Gilbert et al.,
These data therefore provide a potential mechanistic explanation for the inconsistent results regarding the relationships of CDA*2 haplotype and dFdC clinical response in many candidate-gene association studies that genotyped 79A>C (Lys27Gln) to represent the *2 haplotype. It may be the imbalanced distribution of additional functional variants among the Lys27 and Gln27 carriers that led to imbalanced responders vs non/adverse-responders, and thus complicated the interpretation of this SNP contribution to dFdC response. In fact, additional CDA functional polymorphisms that are in partial linkage disequilibrium (LD) with 79A>C have been found to be associated with increased gene expression (Parmar et al., 2011). Additionally, other factors such as genetic changes in LD with 208G>A and/or epigenetic regulation may also contribute to the lower CDA activity associated with the CDA*3 haplotype in vivo, which was not observed in this in vitro kinetic study (Figure 1 and Table 1). Therefore, identification of predictive genetic biomarkers for dFdC clinical responses requires a better understanding of the genetic and epigenetic regulation of CDA gene that modulates its phenotypic activity.

In this first study to examine the direct effect of Ala70Thr on the CDA activity for dFdC, a significant finding is that the magnitude of the reduction in catalytic activity of CDA70Thr depends on the substrate. The reason for the substrate-dependency is unknown. It is possible that the Ala70Thr substitution may modify the interactions of Glu67 in the CDA active site with the C2’-arabino position of substrates, around which strict steric requirements have been reported (Costanzi et al., 2011). Consequently, slight changes at the 2’-sugar position from a hydroxyl group in ara-C to fluorines in dFdC would result in differential reduction of CDA catalytic activity towards ara-C and dFdC. This finding implies that effects of CDA70Thr in the response to deoxycytidine analogs should be individually examined, and CDA70Thr carriers may need different dosage reduction relative to the WT for different deoxycytidine analogs. This has
important clinical implications for Japanese and African descents, where the frequency of the 70Thr variant allele is 3.7% and 13%, respectively (Fukunaga et al., 2004; Deenen et al., 2011).

This is also the first report on the substrate-dependent alterations in the catalytic activity of DCK24Val. All four DCK proteins (WT, Ile24Val, Ala119Gly, and Pro122Ser) exhibited patterns of substrate inhibition kinetics for dFdC and ara-C monophosphorylation (Figure 1 and Table 1). The average apparent Km value of the DCK-WT was 2.15 µM for dFdC (Table 1), which was comparable to the previously reported values (Sabini et al., 2003). Relative to the WT, DCK24Val was the only variant that demonstrated an increase (~2-fold) in the intrinsic clearance of dFdC phosphorylation (p= 0.0122) due to a 40% decrease in Km (p <0.05). DCK119Gly had similar Km and Vmax values as the WT, and DCK122Ser had Km and Vmax values that were ~50% lower than that of WT (p <0.05) and yielded a Clint that trended lower. Although none of these DCK variants had a Km value significantly different from that of the WT for dFdC in a previous study (Kocabas et al., 2008), a direct comparison of the two studies should be done cautiously due to the use of different expression systems (purified proteins vs. crude cell extracts from transiently over-expressed COS-1 cells). In contrast, relative to the WT, all three proteins had comparable Km and Vmax values towards ara-C, although the Clint value of DCK122Ser for ara-C monophosphorylation trended lower than that of the WT due to an approximately 2- and 2.7-fold lower Km and Vmax values (p<0.05), respectively (Figure 1 and Table 1). The mechanism for the substrate-dependency is unclear. Conceivably, the position 24 lies close to a highly conserved P-loop motif that is critical to the interactions of enzyme, substrate, and phosphoryl donor (Sabini et al., 2003), and the substitution from Ile24 to a smaller amino acid Val24 may bring in a locally destabilizing conformational change to the interactions. This may result in differential catalytic activity towards ara-C versus dFdC when the 2’-sugar
DMD #48769

position changes from a hydroxyl group in ara-C to fluorines in dFdC. Although this variant is specific to African descents at an allelic frequency of 2.5% (Kocabas et al., 2008), its impact, as demonstrated in the current kinetic study, warrants further examination of its clinical relevance with regard to treatment with dFdC or other deoxycytidine analogs.

For the first time, direct evidence was provided that DCK is unlikely to have a significant effect on the conversion of dFdU to dFdUMP. The average Cl_{int} value for the dFdU monophosphorylation was 0.027 mL/min/mg, which is over 18,000 times lower than that of dFdCMP formation from dFdC by the DCK-WT (491.9 mL/min/mg). The slope of the initial linear formation rate was utilized to determine the Cl_{int} since there was a linear relationship between dFdUMP formation by DCK and dFdU concentration. The high dFdUMP concentrations previously reported (Veltkamp et al., 2008) were either formed through direct phosphorylation of dFdU by another kinase, or resulted from the biotransformation of dFdCMP to dFdUMP by deoxycytidine monophosphate deaminase (Mini et al., 2006). As a result, no further studies were conducted on the effects of other DCK variants in the conversion from dFdU to dFdUMP.

In conclusion, the CDA Lys27Gln polymorphism does not significantly modulate CDA activity towards dFdC and therefore would not be expected to contribute to inter-individual variability in response to gemcitabine. DCK is unlikely to have a significant effect on the conversion of dFdU to dFdUMP. The higher $in vitro$ catalytic efficiency of DCK24Val towards dFdC monophosphorylation may be relevant to dFdC clinical response, and warrants further examination. This is the first study to show substrate-dependent alterations in catalytic activities of CDA70Thr and DCK24Val, and demonstrates that conclusions regarding pharmacogenomic contributions to response for one substrate should not be extrapolated to another.
DMD #48769

Acknowledgments

We thank Xiliang Wang, Xiaohua He and Mariam Ehsani for performing protein expression and purification work, Matthew Thomas and Timothy Shelbourn for conducting zinc content assays, and Philip Iversen for consulting on the statistical analyses.

Authorship Contributions

Participated in research design: Baker, Wickremsinhe, Ring, Qian, Wrighton, Dantzig, Hall and Guo.

Conducted experiments: Baker, Oluyedun and Li.

Contributed new reagents or analytic tools: Baker, Oluyedun, Qian and Guo.

Performed data analysis: Baker, Oluyedun, Ring, Li, Wrighton, Dantzig, Hall and Guo.

Wrote or contributed to the writing of the manuscript: Baker, Wickremsinhe, Ring, Qian, Wrighton, Dantzig, Hall and Guo.
References

Footnotes

A portion of this work was presented at the 16th ISSX Meeting, Baltimore, 2009 and was published in abstract form in Drug Metab Rev 41 (Suppl 3): 159.

Current addresses of the following authors:

Baker: Clinical Diagnostics Laboratory, DC0438, Eli Lilly and Company; Li: Medical and Molecular Genetics Department of Indiana University, IN 46202; Oluyedun, Ring and Wrighton: Advion Bioanalytical, a Quintiles Company, IN 46241; Dantzig: Your Encore, IN 46204.

Correspondence should be addressed to Guo (guoying@lilly.com), Drug Disposition, DC 0714, Eli Lilly and Company, Indianapolis, IN 46285, USA.
Figure Legends

Figure 1. Kinetics of expressed recombinant allelic variants of cytidine deaminase (CDA) and deoxycytidine kinase (DCK). The data points shown are representative of 2 or 3 independent experiments in duplicated measurements. The line represents the best model fit to the data.

A) ara-C to ara-U and B) dFdC to dFdU conversion: ara-C (20-2560 μM) or dFdC (15.63-2000 μM) was incubated with expressed CDA protein (0.0001 mg) and BSA (0.05 mg) in 100 μl of incubation mixture for 1 minute at 37°C. A single site Michaelis-Menten model was employed. •, CDA-WT. ○, CDA27Gln. ▼, CDA70Thr. C) ara-C to ara-CMP and D) dFdC to dFdCMP conversion: ara-C or dFdC (0.156-320 μM) was incubated with expressed DCK variants (40 to 100 ng) in 100 μl of incubation mixture for 1 minute at 37°C. A substrate inhibition model (velocity (v) = V_{max}/((1+ K_m/S)+(S/K_{si})) was found to best fit the data. •, DCK-WT. ○, DCK24Val. ▼DCK119Gly. ▶DCK122Ser.
Table 1. Kinetic parameters of expressed allelic variants of CDA and DCK.

<table>
<thead>
<tr>
<th></th>
<th>CDA deamination</th>
<th></th>
<th></th>
<th></th>
<th>DCK phosphorylation</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ara-C to ara-U</td>
<td></td>
<td></td>
<td>ara-C to ara-CMP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>K_m (µM)</td>
<td>V_max (nmol/min/mg)</td>
<td>Cl_int (mL/min/mg)</td>
<td>K_m (µM)</td>
<td>V_max (nmol/min/mg)</td>
<td>Cl_int (mL/min/mg)</td>
<td></td>
</tr>
<tr>
<td>CDA-WT</td>
<td>138 (144, 131)</td>
<td>114 (120, 110)</td>
<td>0.83 (0.83, 0.83)</td>
<td></td>
<td>3.04 (3.18, 2.90)</td>
<td>706.5 (815.5, 597.4)</td>
<td>231.4</td>
<td></td>
</tr>
<tr>
<td>CDA27Gln</td>
<td>146</td>
<td>119 (125, 112)</td>
<td>0.74 (0.71, 0.77)</td>
<td></td>
<td>2.54 (2.44, 2.63)</td>
<td>580.3 (520.0, 640.6)</td>
<td>228.3</td>
<td></td>
</tr>
<tr>
<td>CDA70Thr</td>
<td>56a (62, 51)</td>
<td>19a (21, 17)</td>
<td>0.34a (0.34, 0.34)</td>
<td></td>
<td>1.56a (1.47, 1.65)</td>
<td>264.0a (253.4, 274.7)</td>
<td>169.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.43a (1.38, 1.47)</td>
<td>573.2a (598.0, 548.3)</td>
<td>402.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.52a (1.53, 1.50)</td>
<td>1234 (1309, 1160)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.43a (1.38, 1.47)</td>
<td>573.2a (598.0, 548.3)</td>
<td>402.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.52a (1.53, 1.50)</td>
<td>1234 (1309, 1160)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.52a (1.53, 1.50)</td>
<td>1234 (1309, 1160)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The intrinsic clearance (Cl_int) was calculated as V_max/K_m. Values for K_m, V_max, and Cl_int are reported as the parameter estimates average ± standard error (SE) or individual values are indicated in parentheses for triplicate or duplicate studies, respectively.

*p<0.05 when compared to the WT.
Supplemental Information

Pharmacogenomics of Gemcitabine Metabolism: Functional Analysis of Genetic Variants in Cytidine Deaminase and Deoxycytidine Kinase

Jessica A. Roseberry Baker, Enaksha R. Wickremsinhe, Claire H. Li, Olukayode A. Oluyedun, Anne H. Dantzig, Stephen D. Hall, Yue-wei Qian, Barbara J. Ring, Steven A. Wrighton and Yingying Guo

Supplemental Figures Legends

Supplemental Figure 1. Structure of gemcitabine (dFdC) and its metabolic pathways. The dotted line indicates a proposed but unproven pathway. dFdU, 2’,2’-difluorodeoxyuridine; dFdC-MP, dFdC monophosphate; dFdC-TP, dFdC triphosphate; dFdU-MP, dFdU monophosphate; dFdU-TP, dFdU triphosphate.

Supplemental Figure 2. SDS-PAGE analyses of purified recombinant human cytidine deaminase (a) and deoxycytidine kinase (b) variants.
Supplemental Table 1

<table>
<thead>
<tr>
<th>Catalytic Activity</th>
<th>Ions Monitored ((m/z))</th>
<th>IS [^{13}\text{C}_4\text{N}_2\text{C}_5\text{N}_2\text{dFdU}]</th>
<th>Column and Flow Rate</th>
<th>Mobile Phases</th>
<th>Gradient Conditions</th>
<th>Ionization Mode</th>
<th>Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>dFdC to dFdU</td>
<td>dFdU: 265.0 to 107.0; IS: 271 to 119.1</td>
<td>[^{13}\text{C}_4\text{N}_2\text{dFdU}]</td>
<td>Phenomenex Luna 5μ Phenyl-Hexyl 50 x 2.00 mm; 1.00 mL/min</td>
<td>A: Water; B: 0.2% Formic Acid in Acetonitrile:Water (948:50)</td>
<td>Ramp from 0 to 95% B in 1.7 min and hold till 1.9 min</td>
<td>Positive turboionspray</td>
<td>Sciex API 4000</td>
</tr>
<tr>
<td>ara-C to ara-U</td>
<td>Ara-U: 245.0 to 113.0; IS: 270.9 to 119.1</td>
<td>[^{13}\text{C}_4\text{N}_2\text{dFdU}]</td>
<td>Phenomenex Luna CN 5μ 50 x 2.00 mm; 1.00 mL/min</td>
<td>A: Water; B: 0.2% Formic Acid in Acetonitrile:Water (948:50)</td>
<td>Hold at 0% B till 0.4 min, ramp to 40% B by 0.5 min and hold till 0.75 min, ramp to 90% B by 0.85 and hold till 1.2 min</td>
<td>Positive turboionspray</td>
<td>Sciex API 5500</td>
</tr>
<tr>
<td>dFdC to dFdC-MP</td>
<td>dFdCMP: 342.0 to 78.8; IS: 322.0 to 78.8</td>
<td>cytidine 5'-monophosphate</td>
<td>Fluophase PFP 5u 50 X 2.10 mm; 0.750 mL/min</td>
<td>A: 0.2% Formic Acid in Water; B: 0.2% Formic Acid in Acetonitrile:Water (948:50)</td>
<td>Hold at 95% B till 1.3 min, ramp to 0% B by 1.5 min and hold till 2.0 min</td>
<td>Negative turboionspray</td>
<td>Sciex API 4000</td>
</tr>
<tr>
<td>ara-C to ara-CMP</td>
<td>ara-CMP: 321.9 to 78.9; IS: 324.9 to 78.9</td>
<td>cytarabine-(^{13}\text{C})(_{15}\text{N}_2) 5'-monophosphate</td>
<td>Hypersil SAX 5u 50 x 2.1 mm; 1.25 mL/min</td>
<td>A: Methanol; B: 1:1 Acetic Acid:Water</td>
<td>Hold at 10% B till 0.5 min, ramp to 60% B by 1.5 min, ramp to 99% B at 1.51 min and hold till 1.99 min</td>
<td>Negative turboionspray</td>
<td>Sciex API 5500</td>
</tr>
<tr>
<td>dFdU to dFdU-MP</td>
<td>dFdUMP: 343.0 to 79.0; IS: 321.0 to 194.8</td>
<td>thymidine 3'-monophosphate</td>
<td>Synergi 4u MAX-RP 80A 100 X 2.00 mm; 0.300 mL/min</td>
<td>A: 0.5% Heptaflorobuturic acid (HFBA)/ 1% Formic acid in Water; B: 0.5% Heptaflorobuturic acid (HFBA) in Acetonitrile</td>
<td>Ramp from 10% to 100% B in 0.5 min and hold till 2.5 min</td>
<td>Negative turboionspray</td>
<td>Sciex API 4000</td>
</tr>
</tbody>
</table>

\[^{*}\] columns purchased from Phenomenex (Torrance, CA)

\[^{#}\] columns purchased from Thermo Fisher Scientific (Waltham, MA)

Calibration curves for metabolites were developed in the following ranges: dFdU (3.90-1000 µM), ara-U (3.90-500 µM), dFdC-MP (100 - 25600 nM), ara-CMP (100 - 12800 nM), dFdU-MP (100- 12800 nM). The correlation coefficients were calculated by least-square regression analysis.
Supplemental Figure 1

Cytidine deaminase (CDA)

Gemcitabine (dFdC)

Deoxycytidine kinase (DCK)

Deoxycytidylate deaminase (DCTD)

Deoxycytidine kinase (DCK)

Supplemental Figure 1

Cytidine deaminase (CDA)

Gemcitabine (dFdC)

Deoxycytidine kinase (DCK)

Deoxycytidylate deaminase (DCTD)

Deoxycytidine kinase (DCK)

Supplemental Figure 1

Cytidine deaminase (CDA)

Gemcitabine (dFdC)

Deoxycytidine kinase (DCK)

Deoxycytidylate deaminase (DCTD)

Deoxycytidine kinase (DCK)