Polyinosinic/Polyctidylic Acid-Mediated Changes in Maternal and Fetal Disposition of Lopinavir in Rats

Vanja Petrovic and Micheline Piquette-Miller

Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
ABSTRACT

Maintenance of optimal lopinavir (LPV) concentration is essential for effective antiretroviral therapy and prevention of mother-to-child transmission of HIV. However, little is known about the effects of inflammation on the pharmacokinetics of this protease inhibitor and drug transporter substrate, particularly during gestation. Our objective was to study the effect of polyinosinic/polycytidylic acid [poly(I:C)], a viral mimic, on key maternal drug transporters and to examine the effect on maternal and fetal disposition of LPV in rats. Poly(I:C) (5.0 mg/kg i.p.) or saline vehicle was administered to pregnant Sprague-Dawley rats on gestation day 17-18. At 24 hours post-injection, all rats were administered LPV (10 mg/kg i.v.) and plasma and tissues collected at 5-120 min post-administration. Plasma IFN-γ levels were measured by ELISA and transporter expression was measured via real-time polymerase chain reaction. Maternal plasma, hepatic, placental and fetal LPV concentrations were determined by LC-MS/MS. Administration of poly(I:C) induced IFN-γ plasma levels and downregulated the expression of several important ABC drug efflux transporters in placenta and liver of pregnant rats, compared to controls (p<0.05). Maternal LPV plasma concentration and AUC were significantly increased in poly(I:C) group. Plasma protein binding was also significantly higher in poly(I:C)-treated rats. Pronounced increases in hepatic, placental, and fetal LPV tissue:unbound plasma concentrations were seen in the poly(I:C) group, however absolute tissue concentrations were not changed. Since the majority of commonly used and clinically important antiretroviral drugs are known to be ABC transporter substrates, inflammation-mediated changes in transporter expression could affect their maternal disposition and fetal exposure.
INTRODUCTION

Prescription or over-the-counter medications are a necessity for as many as 80% of pregnant women (Anger and Piquette-Miller, 2008). Human immunodeficiency virus (HIV) infections are prevalent in 20 million women of child-bearing age, world-wide. Clinically, antiretroviral (ARV) therapy is crucial for the prevention of mother-to-child-transmission (MTCT) of HIV, but information on the disposition of ARVs in pregnancy or the effect of concomitant infections is still largely lacking. Being the front line barrier against xenobiotics and blood-borne toxins between the mother and the fetus, the integrity of the placenta is of utmost importance. Evidence from the literature demonstrates that the placenta expresses a number of transporters, some of which function in the removal of endogenous compounds and xenobiotics. Specifically, several of the ATP-binding cassette (ABC) drug efflux transporters, including P-glycoprotein (P-gp/ MDR1/ ABCB1), the multidrug resistance-associated proteins (MRPs/ ABCCs), and the breast cancer resistance protein (BCRP/ ABCG2) are highly expressed in placental tissues and have been found to profoundly limit the in vivo passage of potentially toxic xenobiotics into the fetus (Petropoulos et al., 2007; Zhou et al., 2008).

While the role of ABC proteins in drug transport has been examined under normal physiological conditions, the impact of maternal disease on drug transporter regulation and activity is still poorly understood. Infection and inflammation occur frequently in pregnancy and induction of pro-inflammatory cytokines is seen with many prevalent obstetric complications including preeclampsia, gestational diabetes and various infections (Romero et al., 2007). Previous studies from our group and others have reported inflammation-mediated alterations in the expression and activity of rodent ABC
drug transporters in the biologically protective barriers of the liver, intestine and brain, as well as the placenta (reviewed in (Petrovic et al., 2007)). Moreover, altered drug disposition due to the inflammation-mediated suppression of P-glycoprotein was previously observed \textit{in vivo}, in male mice (Hartmann et al., 2005).

Currently, the protease inhibitor lopinavir (LPV) is widely used in clinical regimens for pregnant HIV-positive women. LPV is a Biopharmaceutics Classification System class II antiretroviral drug with a therapeutic dose range of approximately 5-7 \(\mu\)g/ml (mean steady state trough concentration) and peak plasma concentration in the range of 10 \(\mu\)g/ml. Maintenance of optimal LPV concentration is essential for effective therapy and MTCT prevention, but little is known about the effects of inflammatory mediators on the pharmacokinetics of this protease inhibitor. Previous \textit{in vitro} studies have established LPV is a substrate for P-gp and MRP2 (Agarwal et al., 2007; Janneh et al., 2007). As HIV-positive pregnant women are susceptible to opportunistic infections (Watts et al., 2004), it is plausible that changes in drug transporters may occur and in turn mediate changes in LPV disposition. Indeed, we have previously shown that the inflammation-mediated downregulation of placental Bcrp led to the increased accumulation of the Bcrp substrate, glyburide in rat fetus (Petrovic et al., 2008), therefore changes in P-gp could alter fetal accumulation of LPV. Furthermore, LPV is extensively metabolized by cytochrome P450 (CYP) 3A, a metabolizing enzyme that is sensitive to inflammation-mediated changes in expression and functionality (Renton, 2001; Kumar et al., 2004). LPV is also highly bound (\(\geq 99\%\)) to plasma proteins that can fluctuate during infection, mainly \(\alpha\)1-acid glycoprotein (AAG) and, to a lesser extent, albumin, thus having the
potential to affect the concentration of free drug available for intracellular and transplacental passage (Kumar et al., 2004; Chandwani and Shuter, 2008).

Under the MTCT-prevention premise, the benefits of ARV therapy far outweigh the risks of fetal exposure to ARV drugs. However, the fetal safety of most ARV drugs has not been fully established and long-term effects of increased exposure are still unknown (Panel on Treatment of HIV-Infected Pregnant Women and Prevention of Perinatal Transmission). On the other hand, underexposure may result in compromised prevention of virus transmission. Understanding disease-induced changes in the maternal and fetal disposition of the antiretroviral agents commonly prescribed in pregnancy is imperative. Therefore we examined the effect of a viral-like infection, modelled by polyinosinic/polycytidylic acid [poly(I:C), a synthetic viral mimetic double-stranded RNA], on in vivo maternal and fetal disposition of lopinavir.
MATERIALS AND METHODS

Animals and experimental design

Pregnant near-term Sprague-Dawley rats (gestational day (GD) 17-18; Charles River Laboratories, Senneville, QC) were injected i.p. with a single 5.0 mg/kg dose of poly(I:C) (Amersham Biosciences, Piscataway, NJ) dissolved in phosphate buffered saline. Control pregnant rats (GD 17-18) were injected with sterile phosphate buffered saline. Twenty-four hours after the initial injection, all animals received LPV (USP, Rockville, MD) through a tail vein injection (10 mg/kg, i.v.). LPV was dissolved (10 mg/ml) in 4:3:3 (v/v/v) ethanol/propylene glycol/5% dextrose in water. At various times (5, 25, 45, 60 and 120 min) after LPV administration, dams (n = 4 per time point) were sacrificed under anesthesia by exsanguination. Maternal blood was collected and plasma obtained via centrifugation (3000 g, 15 min, 4 °C) and preserved at -80 °C. Maternal livers, placentas, and fetuses were immediately harvested, frozen in liquid nitrogen and preserved at -80 °C for further analyses. All animal studies were approved by the Office of Research Ethics at the University of Toronto and conducted in accordance with the guidelines of the Canadian Council on Animal Care.

Cytokine measurements

Maternal plasma concentrations of interferon-gamma (IFN-γ) were determined via commercially available enzyme-linked immunosorbent assay (ELISA) kits (R&D Systems, Minneapolis, MN) according to the manufacturer's instructions. The sensitivity of this assay is 10 pg/ml. Each sample was examined in duplicate and results within the
standard curve range reported. Results were pooled from all 5 time points in each study group (n = 20 / group).

qRT-PCR and mRNA expression

Methods for RNA isolation, cDNA synthesis and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) have been previously described (Wang *et al.*, 2005; Petrovic and Piquette-Miller, 2010). Briefly, RNA was extracted from tissues (50-100 mg) using TRIzol reagent (Invitrogen, Burlington, ON). RNA was quantified using the NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Wilmington, DE) and then reverse-transcribed to cDNA by use of the First Strand cDNA synthesis kit (Fermentas, Burlington, ON) according to the manufacturer’s protocol. Placental and hepatic mRNA expression levels of relevant genes were measured by qRT-PCR using the Roche LightCycler™ with the LC FastStart DNA Master SYBR Green 1® kit (Roche, Laval, QC). Oligonucleotides for previously reported primer sequences were synthesized at The Hospital for Sick Children (DNA Synthesis Centre, Toronto, ON) (Petrovic and Piquette-Miller, 2010). All mRNA levels were normalized to 18s rRNA and the ratios are presented as the percentage of control values.

Lopinavir LC-MS/MS Assay

Samples and standards were prepared as previously described (Anger and Piquette-Miller, 2011) using a liquid-liquid extraction adapted from Wang *et al.* (Wang *et al.*, 2006). In brief, fetuses, placentas and maternal livers were homogenized in deionized water. 100 μl of thawed plasma or tissue homogenates comprised the samples. The same
volume of drug-free plasma or tissue homogenate was used for constructing LPV standards by adding to tubes containing pre-dried LPV. For plasma and hepatic samples, the final LPV standard concentrations ranged from 62.5–2000 ng/ml, whereas for fetal, and placental samples, the standards measured 6.25–200 and 25–1000 ng/ml, respectively. Ritonavir (RTV) was used as the internal standard (final concentration, 200 ng/ml). For extraction, 50µl of 500mM NaCO3 was mixed with the samples followed by adding 1.2 ml of hexane/ethyl acetate (1:1 v/v). The mixture was then vortexed (1 min) and centrifuged (21000 g, 5 min, 4 °C). The organic layer (700 µl) was transferred to a clean vial, evaporated under nitrogen gas, and the extract reconstituted in 200 µl of 80% methanol. The final extracts were aliquoted in autosampler vials and 10 µl were used for sampling injection.

Plasma and tissue LPV concentrations were measured using high performance liquid chromatography tandem mass spectrometry (LC-MS/MS) as previously described (Anger and Piquette-Miller, 2011). Briefly, for liquid chromatography we used a CTC PAL autosampler (LEAP Technologies, Carrboro, NC) and an Agilent Technologies (Santa Clara, CA) 1100 series pump with a 50 x 4.6 mm, 5 micron, LiChrosorb RP-8 column (Phenomenex, Torrance, CA), while MS/MS was performed on an API 4000 triple quadrupole mass spectrometer equipped with a TurboIonSpray source (Applied Biosystems/MDS Sciex, Foster City, CA). Analyst software, version 1.4.2 was used (Applied Biosystems/MDS Sciex) for analysis of LPV and RTV peak areas and LPV quantification. The lower limit of detection was < 3 ng/ml and the lower limit of quantification was < 10 ng/ml.
Pharmacokinetic Analysis

At each time point, plasma and hepatic tissue were obtained from 4 dams, while 3 fetuses and placentas were collected from each dam for a pooled analysis (per dam) of fetal and placental concentrations. Concentration-time curves, C(t) were obtained by plotting the average of data points. Since this study design entailed one-point sampling data (one blood or tissue sample from each rat), a non-compartmental analysis program for sparse sampling (Phoenix WinNonlin 6.3, Certara, St. Louis, MO) was utilized to calculate key pharmacokinetic parameters derived from maternal plasma concentrations. Additionally, the Bailer method for destructive measurement sampling (Bailer, 1988; Hartmann et al., 2005; Zhou et al., 2008) was used to estimate the mean and S.E. of the maternal plasma AUC and the fetal, placental and hepatic tissue AUCs, from 5-120 min. The Bailer method was previously adapted by Zhou et. al. to the following mathematical form (Zhou et al., 2008):

\[
E(\text{AUC}) = \sum_{i=2}^{m} (E(C_i) + E(C_{i-1})) \times (t_i - t_{i-1})/2
\]

\[
V(\text{AUC}) = \sum_{i=2}^{m} (V(C_i) + V(C_{i-1})) \times ((t_i - t_{i-1})/2)^2
\]

where \(E(\text{AUC})\) and \(V(\text{AUC})\) are the mean and variance of AUC, \(m\) is the number of time points of the time course experiment and \(C_i\) and \(t_i\) are concentration and time, respectively. The time course was integrated by the trapezoidal formula without extrapolation. \(E(C_i)\) and \(V(C_i)\) are the mean and variance of concentration at time \(t_i\), defined as

\[
E(C_i) = \frac{1}{n_i} \sum_{j=1}^{n_i} C_{ij}
\]
where n_i is the number of the concentration data points at time t_i. The variance of mean AUC is defined as

$$V(\text{AUC}) = \frac{1}{n_i - 1} \sum_{j=1}^{n_i} \left(C_{ij} - E(C_i) \right)^2$$

The difference between groups is considered statistically significant if $Z_0 > 1.96$ (95% confidence interval, $p<0.05$), where

$$Z_0 = \frac{\bar{\phi}_1 - \bar{\phi}_2}{\sqrt{SE_1^2 + SE_2^2}}$$

$\overline{\phi}_1$ and $\overline{\phi}_2$ are the means of AUC, and SE_1 and SE_2 are the standard errors of AUC for the two groups. SE of the AUC is defined as the square root of the variance of mean AUC.

Protein Binding Assay

LPV plasma protein binding was measured by ultrafiltration using Amicon Ultra-0.5 Centrifugal Filter Devices with nominal molecular weight limit of 10,000 (Millipore, Billerica, MA). Plasma samples taken at 5 min were thawed and incubated at 37 °C for 30 min, then transferred to filter devices and equilibrated at 30 °C for 30 min. The samples were then centrifuged (14000 g, 15 min, 30 °C) and the ultrafiltrate collected. Filtrate LPV concentrations were quantified using LC-MS/MS as described for plasma and tissues. For standard curve calibration, filtrate was collected from drug-free plasma samples. LPV concentrations in the filtrate samples were compared against the LPV
concentrations in corresponding unfiltered plasma samples and the percentage unbound (% unbound) was calculated as follows: % unbound = (C_{filtered} / C_{unfiltered}) x 100.

Statistical analysis

Data were analyzed using Prism 6 (GraphPad Software, San Diego, CA). All results are expressed as means ± standard error (SE). With the exception of the pharmacokinetic analysis described above, for comparison of the effects between poly(I:C) and control, a two-tailed independent-samples t-test was used. Significance was assigned at \(\alpha = 0.05 \), and is indicated as follows: *: \(p < 0.05 \), **: \(p < 0.01 \), and ***: \(p < 0.001 \).
RESULTS

Interferon response to poly(I:C)

Interferon-gamma levels were examined in maternal plasma samples from poly(I:C)-treated and vehicle control rats. Viruses or administration of double stranded RNA such as poly(I:C) are known to induce Type I interferons and trigger an acute phase response. Indeed, our ELISA results demonstrated a significant induction of IFN-γ, 24 hours after administration of 5.0 mg/kg poly(I:C), as compared to control (Figure 1). Measurements of IFN-γ were below detection limit in many control samples (11 out of 20) and were thus considered to be <10 pg/ml.

Effect of poly(I:C) on maternal drug transporter and Cyp3a2 expression

The impact of poly(I:C) on the expression of transporters in placental and hepatic tissues was examined by qRT-PCR (n=7-10/group) in order to confirm previously observed poly(I:C)-mediated changes in the expression of transporters that are reportedly implicated in LPV transport, namely the two P-gp isoforms Abcb1a and Abcb1b, as well as Abcc2 (Mrp2) (Agarwal et al., 2007; Petrovic and Piquette-Miller, 2010).

In line with our previous observations, administration of poly(I:C) imposed significant changes in the expression of these transporters in the liver (Figure 2). After administration of 5.0 mg/kg poly(I:C), Abcb1a was significantly reduced to 61 ± 9% of control values, while Abcb1b was drastically increased (p < 0.05). Expression of hepatic Abcc2 (Mrp2) was significantly reduced to 61 ± 6% of control levels (p < 0.05). Additionally, expression levels of the metabolizing enzyme Cyp3a2 were examined as downregulation has been reported in numerous models of acute and chronic
inflammation. We found a significant downregulation of hepatic Cyp3a2 to 70 ± 8% of control mRNA value ($p < 0.05$).

In placenta, we also observed significant changes in the mRNA expression of examined transporters (Figure 2). Placental Abcb1a and Abcb1b were significantly downregulated in poly(I:C)-treated dams, to 70 ± 9% and 66 ± 8% of control mRNA levels, respectively ($p < 0.05$). Abcc2 mRNA levels were decreased in the poly(I:C)-treated group to 44 ± 22% of control value, but this did not reach significance.

Influence of poly(I:C) on maternal and fetal LPV exposure

Maternal plasma, hepatic, placental and fetal LPV concentrations were determined by a validated LC-MS/MS assay, as described under *Materials and Methods*. Overall, our data showed that the fetal and placental LPV tissue concentrations were much lower than the maternal total plasma LPV concentrations indicating limited fetal distribution. Plasma levels in the pregnant rats were in line with the typical clinical therapeutic range of LPV in HIV-infected patients. A significant increase in maternal plasma concentrations of LPV was seen in rats administered poly(I:C), as compared to vehicle control, with the most pronounced differences seen at 25-60 minutes after LPV administration (Figure 3). Table 1 summarizes the pharmacokinetic parameters calculated for both groups of pregnant rats. We obtained a terminal half-life of approximately 1.5 h, which is in line with previous reports (Kumar *et al.*, 2004). Terminal half-life was unchanged in the poly(I:C)-treated group. However, large differences in time-zero concentration, clearance and volume of distribution are evident between the treatment groups. As expected, LPV was highly bound to plasma proteins (>
99%) and significantly different between treatment groups. The unbound fraction in the control rats was 0.85 ± 0.33%, compared to 0.1 ± 0.01% in poly(I:C) group ($p < 0.05$).

Plasma AUC between 5 and 120 min was significantly higher in the poly(I:C) group, (126 ± 13 in controls vs. 283 ± 28 μg*min/ml in poly(I:C)), as calculated by Bailer’s method (Table 2). The AUC$_{5-120}$ for fetal, placental and hepatic tissue concentrations did not differ significantly between the two groups (Table 2), reflecting similar absolute tissue concentrations (Supplemental Figure 1). However, when normalized to unbound LPV plasma concentrations, higher levels of accumulation were seen in these tissues at all time points, with significantly higher levels at 1-2 hrs ($p < 0.05$) (Figure 4).
DISCUSSION

Lopinavir is commonly used in HIV-infected pregnant women as part of highly active antiretroviral therapy, however the impact of co-existing conditions such as infection or inflammation on disposition is largely unknown (Watts, 2006; Lambert et al., 2011). Maintaining adequate drug concentrations is necessary as subtherapeutic concentrations can increase the risk of MTCT, while supratherapeutic concentrations can increase risk of drug toxicities (Ofotokun et al., 2011).

In the present study, we examined the impact of an acute inflammatory response elicited by poly(I:C) on the disposition of LPV in pregnant rats. Consistent with induction of inflammation following a viral infection, we saw a dramatic increase in plasma concentrations of IFN-γ in the poly (I:C) group (Fortier et al., 2004; Petrovic and Piquette-Miller, 2010). Likewise, the maternal plasma AUC5-120min of LPV was significantly increased by more than 2-fold in the poly(I:C) group, suggesting that inflammation imposes changes in the pharmacokinetics of LPV. It is well recognized that induction of inflammation by bacteria or virus can cause changes in drug disposition (Morgan et al., 2008).

Increased LPV levels in pregnant poly(I:C)-treated rats could occur through a number of mechanisms such as altered plasma protein binding, metabolism and distribution. LPV is highly bound (≥99%) to plasma proteins (Kumar et al., 2004; Chandwani and Shuter, 2008). An unbound fraction of 0.89% has been reported for LPV in serum from healthy pregnant women (Gulati et al., 2009), which is comparable to the 0.85% we saw in the
control pregnant rats. A significant correlation of LPV protein binding with AAG concentrations has been reported in pregnant and post-partum HIV-infected women (Aweeka et al., 2010). It is well known that inflammation can cause an induction of AAG (Schreiber et al., 1989). In humans, the serum concentration of AAG rises two to five times during an acute phase response (Hochepied et al., 2003). Various models of acute inflammation in rats have also demonstrated an increase in AAG levels resulting in altered pharmacokinetics of highly bound drugs (Murai-Kushiya et al., 1993; Laethem et al., 1994). Consistent with reported increases in AAG, we found a significant increase in plasma protein binding of LPV in poly(I:C)-treated rats, as compared to control group. Generally, increased protein binding of a drug is associated with a decrease in the steady state volume of distribution (Vd or Vss). The calculated values for control and poly(I:C)-treated dams suggest a relative 2.5-fold difference in Vss between the groups. Therefore the reduction in Vss likely contributes to higher plasma concentrations of LPV in poly(I:C)-treated dams. Of note, it was not surprising that k_e values were not different between the groups, since half-life is a function of clearance and volume of distribution and these were both decreased after treatment with poly(I:C).

It is well established that inflammation can lead to changes in drug disposition through downregulation of drug metabolizing enzymes (Morgan, 1997; Renton, 2001). For example, impaired theophylline clearance during confirmed viral infection episodes is attributed to an IFN-mediated downregulation of CYP1A2-mediated metabolism. In humans, LPV is primarily cleared via CYP3A-mediated metabolism (Kumar et al., 2004; Chandwani and Shuter, 2008). A dramatic increase in LPV systemic exposure is seen in
Cyp3a^{-/-} mice when compared with wild-type mice, indicating its importance in
determination of LPV pharmacokinetics (Waterschoot et al., 2010). We measured the
hepatic mRNA expression levels of Cyp3a2, the rat equivalent of CYP3A4 in humans,
and we observed a significant downregulation in poly(I:C)-treated rats. This poly (I:C)-
mediated downregulation is consistent with previous reports (Knickle et al., 1992;
Petrovic and Piquette-Miller, 2010). As plasma levels of metabolites were not measured
in this study, the resultant effect of poly(I:C) on the hepatic clearance of LPV is not
immediately obvious; however, previous studies have demonstrated that LPV metabolite
concentrations in rats are reflective of Cyp3a2 mRNA levels (Anger and Piquette-Miller,
2011). LPV is a highly extracted drug and is administered clinically with low-dose RTV
in order to inhibit CYP3A enzymes and increase oral bioavailability. In this study we
administered LPV intravenously in order to minimize variability due to intestinal transit
times and circumvent the potential effects of poly(I:C) on intestinal and hepatic first pass
extraction. Hepatic metabolism of highly extracted drugs such as LPV is more sensitive
to changes in hepatic flow than to changes in plasma protein binding and intrinsic
metabolism. Nevertheless it is still plausible that the decreased expression of Cyp3a
along with increased plasma protein binding of LPV, could result in decreased hepatic
metabolism, thereby contributing to altered LPV levels in the poly(I:C)-treated dams.

The co-ordinated activity of CYP3A with drug transporters can also impact systemic
drug exposure (Benet and Cummins, 2001; Morgan et al., 2008). LPV is transported by
the apical drug efflux transporter P-gp. Several <i>in vitro</i> transport studies have
demonstrated evidence that LPV is a substrate of P-gp, a finding that is also supported by
studies in an Abcb1 knockout mouse model (Agarwal et al., 2007; Janneh et al., 2007; Waterschoot et al., 2010). We saw a decrease in mRNA expression of Abcb1a in the liver and placenta of poly(I:C)-treated rats. Interestingly, levels of Abcb1b were increased in maternal liver but decreased in placenta. We have previously shown that P-gp protein expression is decreased in the livers of poly(I:C) treated rats despite increased mRNA levels of Abcb1b (Petrovic and Piquette-Miller, 2010). A decreased P-gp expression in liver could therefore contribute to a decreased hepatobiliary clearance of LPV. Indeed we saw increased hepatic levels of LPV (relative to unbound concentration) in the pregnant rats that were administered poly(I:C), compared to controls. This could be due to decreased P-gp-mediated secretion of LPV into bile. Previous studies demonstrated that poly(I:C)-mediated changes in the expression of endogenous bile acid transporters were associated with elevated levels of bile acids in serum (Petrovic and Piquette-Miller, 2010). It is likely that similar mechanisms are involved in the biliary transport of exogenous substrates, such as LPV. There is still speculation whether CYP3A is a greater determinant of LPV plasma concentrations in comparison with P-gp (Wyen et al., 2008; Waterschoot et al., 2010), however our findings suggest that it is the combined action of these pathways that impact the overall LPV exposure, with evidence of the impact of P-gp on LPV tissue distribution. While we also observed a significant downregulation of Abcc2 in livers of poly(I:C)-treated rats, which could further contribute to altered hepatobiliary clearance of LPV, the role of Mrp2 in LPV disposition is controversial. Although studies in MRP2 transfected cells demonstrate LPV transport, studies in Mrp2 knockout mice models failed to reveal a role of this transporter in the
vivo disposition of LPV (Waterschoot et al., 2010). Hence the role of this transporter on LPV disposition in pregnancy remains to be delineated.

It has been shown that placental transfer of LPV is highly variable, as evidenced by intersubject differences in the ratio of cord-to-maternal blood ranging from 5-25% (Gingelmaier et al., 2006). Likewise cord-to-maternal ratios ranging from 7-43% are reported for nelfinavir (van Heeswijk et al., 2004). As both P-gp expression and high plasma protein binding play important roles in restricting placental transfer of these agents, it is plausible that disease or inflammation-mediated changes could contribute to clinical variability. The observed decrease in placental expression of P-gp in the poly(I:C)-treated rats could lead to increased accumulation of drug substrates in fetal tissues. On the other hand, the observed inflammation-mediated increase in LPV plasma protein binding might lead to decreased transplacental transfer, as only free drug is able to cross cell membranes. Overall, we observed significant increases in LPV accumulation in placenta and fetal tissues of poly(I:C)-treated rats, when normalized to unbound plasma concentrations. This is in line with other studies that have shown an increase in accumulation of P-gp substrates attributed to decreased P-gp expression and activity. For instance, a markedly higher accumulation of the P-gp substrate 99mTc-sestamibi was seen in fetal tissues isolated from endotoxin-treated dams (Wang et al., 2005). Decreased P-gp expression and increased protein binding are opposing factors that attenuate the impact of inflammatory response on absolute tissue accumulation. To this point, when we examined the total (free and bound) concentrations of LPV in fetal tissues, the levels in poly(I:C) and control groups were not significantly different,
suggesting there is likely no appreciable difference to pharmacodynamics. However, the fact that increased levels of tissue accumulation are seen when normalized to unbound LPV plasma concentrations indicates that transfer of free drug is greater in the poly(I:C) group. This suggests that, in addition to altered plasma protein binding, decreased expression of the efflux transporters plays a role in LPV disposition. While LPV is clinically administered orally as a co-formulation with low-dose RTV in order to increase bioavailability, it has been reported that LPV binding to AAG is not affected by RTV at therapeutically relevant concentrations (Gulati et al., 2009).

In conclusion, our study in a rat model of viral infection demonstrated that inflammation-mediated changes in plasma protein binding, drug metabolism and drug transport significantly alter maternal and fetal disposition of LPV. It remains to be elucidated whether a similar trend would be seen in clinical cases of co-infection in pregnant women. As LPV metabolism and P-gp mediated transport appear highly comparable between rodents and humans (Kumar et al., 1999), further clinical investigation of inflammation-mediated effects on LPV is warranted. Moreover as LPV is generally administered in combination with other antiretrovirals that are substrates of P-gp, MRP2, BCRP, and CYP3A (Kis et al., 2010), the effects of inflammation on combination ARV therapies remain to be elucidated.
ACKNOWLEDGEMENTS

We thank Michelle Young and Dr. Matthew Forbes at the Advanced Instrumentation for Molecular Structure (AIMS) Laboratory, Department of Chemistry, University of Toronto, for providing their invaluable expertise and technical assistance with our LC-MS/MS experiments. We thank Dr. Sarabjit Gahir for the provision of Phoenix WinNonlin software and pharmacokinetic expertise. We also thank Ragia Ghoneim, Alex Cressman and Nick Zhidkov for their technical assistance with animal studies.
AUTHORSHIP CONTRIBUTIONS

Participated in research design: V.P. and M.P.M.

Conducted experiments: V.P.

Performed data analysis: V.P.

Wrote or contributed to the writing of the manuscript: V.P. and M.P.M.
REFERENCES

FOOTNOTES

Funding for this study was provided by an operating grant from the Canadian Institutes of Health Research (CIHR). V. Petrovic was the recipient of a Doctoral Research Award from CIHR and an Ontario Graduate Scholarship from the Ontario Ministry of Training, Colleges and Universities.
FIGURE LEGENDS

Figure 1: *IFN-γ concentration in maternal plasma.* Pregnant rats were injected with poly(I:C) and sacrificed 24 h later. IFN-γ plasma concentrations were determined via ELISA and are presented as pg/ml of plasma. Data represent the mean ± S.E. (n=20/group) and statistics calculated by *t*-test. ***, *p* < 0.001, as compared to saline control.

Figure 2: *Effect of poly(I:C) on the hepatic and placental mRNA expression.* Hepatic and placental tissues were collected from near term pregnant rats 24–26 h after poly(I:C) administration (5mg/kg, i.p). Analysis of mRNA expression was performed via qRT-PCR and gene expression normalized to 18s, as described under *Materials and Methods*. Data represent the mean ± S.E. as a percentage of control value (n = 7-10/group) with statistics calculated by *t*-test. *, *p* < 0.05, as compared to saline control.

Figure 3: *Time course of LPV concentration in maternal circulation.* Pregnant rats were administered LPV (10 mg/kg, i.v.) 24 h after exposure to poly(I:C) (5 mg/kg, i.p.). Maternal blood samples were collected at 5, 25, 45, 60 and 120 min post-LPV injection (n = 4 dams/ group/ time point). Total drug concentrations in maternal plasma were determined via LC-MS/MS, as described under *Materials and Methods*. Results are presented as mean ± S.D. Statistical differences between the two groups at each time point were calculated by *t*-test. *, *p* < 0.05; **, *p* < 0.01.
Figure 4: Fetal and tissue accumulation of LPV. Pregnant rats were administered LPV (10 mg/kg, i.v.) 24 h after exposure to poly(I:C) (5 mg/kg, i.p.). Maternal blood, hepatic and placental tissue and fetuses were collected at 5, 25, 45, 60 and 120 min post-LPV injection. Drug concentrations in maternal plasma unbound fraction, tissue and fetal homogenates were determined via LC-MS/MS, as described under Materials and Methods. Results are presented as mean ± S.E. (n = 4 dams/group/time point; for fetal and placental concentrations n = 3/ dam). Statistical differences between the two groups at each time point were calculated by t-test. *, p < 0.05.
Table 1

Pharmacokinetic parameters of lopinavir in plasma of control versus poly(I:C)-treated pregnant rats following a 10 mg/kg i.v dose

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>Poly(I:C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_z</td>
<td>0.0076</td>
<td>0.0080</td>
</tr>
<tr>
<td>C_0</td>
<td>6199</td>
<td>17329</td>
</tr>
<tr>
<td>$\text{AUC}_{0-\text{INF}}$</td>
<td>220085</td>
<td>482860</td>
</tr>
<tr>
<td>CL</td>
<td>45</td>
<td>21</td>
</tr>
<tr>
<td>V_{ss}</td>
<td>4567</td>
<td>1803</td>
</tr>
<tr>
<td>$f_{u,\text{plasma}}$</td>
<td>0.85 ± 0.33</td>
<td>0.10 ± 0.01*</td>
</tr>
</tbody>
</table>

λ_z: first-order elimination rate constant, k_e; C_0: concentration at time zero; CL: clearance; V_{ss}: volume of distribution; f_u: fraction unbound

a: Predicted values calculated by non-compartmental analysis (Phoenix WinNonlin)

b: percentage unbound LPV (mean ± SE) calculated as described under Materials and Methods.

* Significantly different from controls, $p < 0.05$
Maternal plasma and fetal, placental and hepatic AUCs (5–120 min) were calculated using Bailer’s approach as described under Materials and Methods. Data represent mean ± SD (n = 4 dams per time point, 3 fetus or placenta per dam). Z₀ values were calculated to assess the statistical differences of AUCs (shown as p-values) between the control and poly(I:C)-treated pregnant dams.

<table>
<thead>
<tr>
<th>AUC₅₋₁₂₀ₐₘᵢₙ</th>
<th>control</th>
<th>poly(I:C)</th>
<th>Z₀</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal plasma (ng*min/ml plasma)</td>
<td>126060 ± 13530</td>
<td>282550 ± 27720</td>
<td>5.07</td>
<td><0.001</td>
</tr>
<tr>
<td>Fetus (ng*min/g fetus)</td>
<td>2900 ± 400</td>
<td>2050 ± 420</td>
<td>1.45</td>
<td>>0.05</td>
</tr>
<tr>
<td>Placenta (ng*min/g placenta)</td>
<td>26830 ± 2240</td>
<td>30200 ± 3470</td>
<td>0.82</td>
<td>>0.05</td>
</tr>
<tr>
<td>Liver (ng*min/g liver)</td>
<td>82660 ± 11820</td>
<td>83330 ± 8510</td>
<td>0.05</td>
<td>>0.05</td>
</tr>
</tbody>
</table>
Figure 1

IFN-γ

C_{\text{plasma}} (pg/ml)

control

poly I:C

0

25

50

75

100

125

Figure 3

The graph shows the concentration of LPV in plasma (ng/ml) over time (min) for control and poly I:C groups. The concentration decreases with time for both groups, with the control group showing a slightly higher concentration at most time points. Significant differences are indicated by asterisks: * (p < 0.05) and ** (p < 0.01).