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Abstract

Modeling and simulation of drug disposition has emerged as an important tool in drug development, clinical
study design and regulatory review, and the number of physiologically based pharmacokinetic (PBPK)
modeling related publications and regulatory submissions have risen dramatically in recent years. However, the
extent of use of PBPK modeling by researchers, and the public availability of models has not been
systematically evaluated. Thisreview evaluated PBPK-related publicationsto 1) identify the common
applications of PBPK modeling, 2) determine ways in which models are devel oped, 3) establish how model
quality is assessed and 4) provide alist of publically available PBPK models for sensitive P450 and transporter
substrates as well as selective inhibitors and inducers. PubMed searches were conducted using the terms PBPK
and physiologically based pharmacokinetic model to collect published models. Only papers on PBPK modeling
of pharmaceutical agentsin humans published in English between 2008 and May 2015 were reviewed. A total
of 366 PBPK-related articles met the search criteria with the number of articles published per year rising
steadily. Published models were most commonly used for drug-drug interaction (DDI) predictions (28%),
followed by interindividual variability and general clinical pharmacokinetic predictions (23%), formulation or
absorption modeling (12%) and predicting age related changes in pharmacokinetics and disposition (10%). 106
models of sensitive substrates, inhibitors and inducers were identified. An in-depth analysis of the model
development and verification revealed alack of consistency in model development and quality assessment

practices demonstrating a need for devel opment of best-practice guidelines.

¥20z ‘0T |udY uo sfeuinor 134SY e Bio'sjeulno fisdse puip wio.j pspeojumod


http://dmd.aspetjournals.org/

DMD Fast Forward. Published on August 21, 2015 as DOI: 10.1124/dmd.115.065920
This article has not been copyedited and formatted. The final version may differ from this version.

DMD #65920

I ntroduction

Prediction of disposition characteristics of new drug candidates can identify pharmacokinetic liabilities
such as poor biocavailability, high clearance, potential for DDIs, or the need for dose adjustments in special
populations (Chen et a., 2012; Di et d., 2013; Jones et al., 2009; Obach et al., 1997; Shardlow et al., 2013;
Zhao et al., 2011). Such predictions can help decision making regarding development progression, dose
selection and clinical study strategies (Chen et al., 2012; Di et al., 2013; Jones et al., 2015, 2009; Obach et al.,
1997; Rowland et al., 2011; Shardlow et al., 2013; Zhao et al., 2011). A variety of allometric scaling, in vitro-
to-in vivo extrapolation (IVIVE) and in silico methods has been devel oped over the years to enable predictions
of human pharmacokinetics prior to first in human dosing. More than 30 different methods exist to predict
human volume of distribution (Di et al., 2013) including interspecies scaling (Lombardo et al., 2013a) and in
silico methods. Generally in vivo animal data, LogP values, plasma protein binding and blood to plasma ratios
are used to predict human steady state volume of distribution and tissue-to- plasma partitioning (Berezhkovskiy,
2004; Poulin and Theil, 2000, 2002; Poulin et al., 2001; Rodgers and Rowland, 2006; Rodgers et al., 2005).
While interspecies scaling alows predictions of human volume of distribution, its utility in the prediction of
human clearance islimited due to species differences in the expression and substrate specificity of drug
metabolizing enzymes and transporters (Di et al., 2013; Obach et al., 1997). Instead, IVIVE tools have been
devel oped to predict hepatic bioavailability and whole organ clearances from in vitro intrinsic clearance, protein
binding and permeability dataaswell asin vivo blood flows. (Cho et al., 2013; Houston, 1994; Iwatsubo et al.,
1997; Lombardo et al., 2013b; Obach et al., 1997). While further efforts are needed to improve IVIVE,
particularly for transporters and non-P450 enzymes, V1V E has become an important tool in the process of

predicting human exposures and effective dosages.

Quantitative methods to predict pharmacokinetics range in complexity from static mechanistic
predictions of specific PK parameters to dynamic PBPK models used to predict plasma concentration time

curves. Static mechanistic methods typically use one or two in vitro parameters to predict specific human PK
4
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parameters, and can therefore be easily adopted in screening programs to prioritize and triage compounds based
on undesirable pharmacokinetics. Static prediction methods have been used extensively to predict human
metabolic (Gillette, 1971; Iwatsubo et al., 1997; Obach et a., 1997; Rowland et al., 1973) and transporter
mediated clearance (Barton et al., 2013; Liu and Pang, 2005; Varma et al., 2013) as well as drug interactions
(Fahmi et al., 2008; Mayhew et al., 2000; Obach et al., 2007; Wang et al., 2004). Y et, while static models are
very useful for predictions of overall drug exposures in humans or the overall magnitude of DDIs, they rely on
steady state assumptions and hence cannot predict the overall shape of the plasma-concentration time curve,
time-varying changes in enzyme or transporter inhibition or the distribution kinetics of new drugs. In contrast
PBPK models provide simulated concentration versus time profiles of adrug and its metabolite(s) in plasma or
an organ of interest, and allow for estimation of maximum plasma concentrations, absorption kinetics,
distribution kinetics and drug elimination simultaneously. While the simultaneous modeling of drug disposition
processes provides multiple advantages (Almond et al., 2009; Di et al., 2013; Fahmi et al., 2009; Galetin, 2014,
Huang and Rowland, 2012; Jamei et al., 2009a; Rostami-Hodjegan and Tucker, 2007; Rowland et al., 2011;
Shardlow et al., 2013; Tsamandouras et al., 2013; Varmaet a., 2015a), it also makes PBPK modeling labor
intensive and requires considerably more parameter estimates and more detailed physiological and drug specific
data than static predictions. The simulated concentration time profiles can aid in selection of optimal sampling
times or dosing strategies in different study populationsincluding vulnerable subjects (Rowland et a., 2011).
They can also aid in design of DDI studies in which the timing of the dosing of the perpetrator drug and the
victim drug is critical (Shardlow et al., 2013; Zhao et al., 2009), or in Situations where perpetrator

concentrations fluctuate over the sampling and dosing interval (Almond et al., 2009; Di et al., 2013; Fahmi et
al., 2009; Pang and Durk, 2010). Additionally, the ssmulated concentrations can be linked to pharmacodynamic
endpointsin order to allow for pharmacokinetic/pharmacodynamic (PKPD) simulations. Furthermore, because
PBPK models account for sequential metabolism and permeability limited processes, they may provide

advantages for predicting bioavailability when compared to static models (Chow and Pang, 2013; Fan et al.,
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2010). This can have important implications for first in human dose selection, particularly for drugs with active
or toxic metabolites. In some cases, PBPK models incorporate interindividual variability, thus allowing for the
prospective simulation of the population variability in the pharmacokinetics of a given drug. Population
variability is not typically accounted for in static models but can provide insight into variability in exposure and
drug response in a given population (Brown et al., 2012; Cubitt et al., 2011; Jamei et al., 2009a; Rostami-
Hodjegan and Tucker, 2007). Finaly, the separation of drug specific parameters and physiological parameters
within the model, can result in a more mechanistic understanding of sources of interindividual variability than
what can be provided by population and compartmental modeling techniques (Rostami-Hodjegan and Tucker,
2007; Tsamandouras et al., 2013; Vinks, 2013). However, detailed understanding of physiological variablesin
the population of interest is required but not always available, which can hinder the use of PBPK modeling in

special populations.

In recent years, the number of publications (Rostami-Hodjegan et al., 2012; Rowland et al., 2011) and
regulatory submissions (Huang et a., 2013; Sinha et al., 2014; Zhao et al., 2011) referencing or including PBPK
modeling hasincreased substantially. The development of user friendly software tools such as Simcyp®,
GastroPlus™ and PK Sim® have made modeling more accessible to those without extensive modeling and/or
programming experience (Chen et al., 2012; Huang et al., 2013; Zhao et al., 2011). However, it is possible that
many users are not completely familiar with or aware of the assumptions made and equations used during
model building and implementation. As such, the increased implementation of PBPK modeling hasled to a
need for comprehensve software and modeling-focused education as well as need for confirming the sound
knowledge of users in absorption, dissolution, metabolism and excretion (ADME) principles and fundamental
physiology (Jones et al., 2015). A recommendation for presence of a modeling expert for advice and review of
models has also been made to ensure appropriate decision-making and interpretation of the modeling (Jones et
al., 2015). Advancementsin computer science and physiologically based mathematical models have led to the

expansion of the potential applications of PBPK modeling. For example, more complex absorption models
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such as advanced dissolution, absorption and metabolism (ADAM) models (Jamei et al., 2009b) and advanced
compartmental absorption and transit (ACAT) models (Agoram et al., 2001) have been devel oped that enable
the use of PBPK modeling for the simulation of food effects (Heimbach et a., 2013; Patdl et al., 2014; Shono et
al., 2009; Turner et al., 2012; Xiaet a., 2013a; Zhang €t al., 2014), the impact of drug properties on absorption
kinetics (Kambayashi et al., 2013; Parrott et a., 2014), and intestinal interactions (Fenneteau et al., 2010). The
development of sophisticated models that allow for the simulation of multiple inhibitors or inducers, relevant
metabolites, and multiple mechanisms of interaction have permitted the prediction of complex DDIs involving
enzymes, transporters and multiple interaction mechanisms (Chen et al., 2015; Dhuriaet al., 2013; Gertz et al.,
2013, 2014; Guo et al., 2013; Kudo et al., 2013; Rekic et a., 2011; Sager et a., 2014; Shi et al., 2015; Siccardi
et a., 2013; Varmaet a., 2012, 2013; Wang et al., 2013a; Zhang et al., 2009). Furthermore, the mechanistic
understanding of ADME changes that occur in different age groups or disease states hasimproved and
consequently PBPK modeling has been used to simulate drug disposition in special populations including
hepatic (Johnson et al., 2014) and renal impairment populations (Li et al., 2012; Lu et a., 2014; Sayamaet al.,
2014; Zhao et al., 2012a), children (Leong et al., 2012) and pregnant women (Andrew et al., 2008; Gaohua et

al., 2012; Horton et al., 2012; Keet a., 2012, 2013a, 2013b; Lu et al., 2012).

In the past 10 years, PBPK modeling has become increasingly accepted by regulatory agencies as a
means of informing clinical study strategy and, as aresult, it has become a useful tool in drug development
(Huang et al., 2013; Leong et al., 2012; Snha et a., 2014; Zhao et al., 2012b). PBPK approaches have been
included in regulatory guidance on hepatic impairment (European Medicines Agency Committee for Medicinal
Products for Human Use, 2005), pediatrics (U.S. Food and Drug Administration Center for Drug Evaluation
and Research (CDER), 2014), DDIs (European Medicines Agency Committee for Medicinal Products for
Human Use, 2012; Japan Ministry of Health, Labor and Welfare, 2014; U.S. Food and Drug Administration
Center for Drug Evaluation and Research (CDER), 2012), and pharmacogenetics (European Medicines Agency

Committee for Medicinal Products for Human Use, 2011; U.S. Food and Drug Administration Center for Drug
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Evaluation and Research (CDER), 2013) as a means of guiding clinical study design and labeling decisions.
Hence, in addition to being used to inform internal development decisions (Chen et al., 2012; Jones et al., 2015,
2009; Shardlow et al., 2013), PBPK modeling isincreasingly being used in investigational new drug (IND) and
new drug applications (NDA) (European Medicines Agency Committee for Medicinal Products for Human Use,
2014; Huang et al., 2013; Sinhaet al., 2014). The FDA Office of Clinical Pharmacology has been tracking the
use of PBPK modeling in regulatory submissions since 2008 (Huang et al., 2013; Pan, 2014). Based on 2013
submissions, the models included in regulatory filings were most commonly used for DDI (60%), pediatric
(21%) and absorption (6%) predictions (Pan, 2014). PBPK models have been used during the review process to
inform dose selection and optimal design for clinical studies (Leong et al., 2012) and in some casesto directly
inform labeling (Zhao et a., 2012b). For example, cabazitaxel is predicted to cause in vivo CY P3A4 inhibition
based on its I/ K; ratio, but modeling and simulation suggested minimal risk for DDI in vivo. As aresult the
label statesthat a“a post-marketing requirement for the effect of cabazitaxel on the pharmacokinetics of a
sensitive CY P3A4 substrate is therefore not necessary” (Huang and Rowland, 2012; Huang et al., 2013; U.S.
Food and Drug Administration Center for Drug Evaluation). Additional examples of PBPK-informed labeling
between 2008 and 2014 are included in recent reviews (Huang et al., 2013; Jones et ., 2015; Sinha et al., 2014;

Zhao et a., 2012b).

Despite the increasing use of PBPK modeling, there are many challenges that limit the utility of PBPK
modeling and ssimulation. In general 1VIVE using PBPK models requires considerably more experimental and
in silico data than static models. Due to the large number of parameters required for PBPK modeling and
limited availability of in vivo datato verify individual parameters, model predictions can be confounded by lack
of confidencein individual parameters. For example, for drugs that have not been administered intravenously to
humans, distribution and absorption parameters cannot be validated or verified experimentally, introducing
uncertainty into model parameters and output. The application of PBPK modeling to predict PK in disease

populationsis hindered by lack of in vivo datain patient populations, poor understanding of the physiological
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changes that occur in certain populations and limited knowledge of tissue specific changes in enzyme and
transporter expression (Edginton and Joshi, 2011; Jones et a., 2015; S ostedt et al., 2014). Furthermore,
absolute abundances of trangporters and non-P450 enzymes in the liver and other tissues are not well
established, resulting in poor IVIVE of the kinetics of non-P450 substrates and permeability limited drugs
(Edginton and Joshi, 2011; Harwood et al., 2013; Jones et al., 2015, 2012; Varma et al., 2012). Additionaly, a
lack of selective substrates and inhibitors for some non-P450 enzymes and transporters has prevented model
validation againgt in vivo data (Jones et al., 2015). While efforts are being made to characterize tissue specific
transporter expression, current models of the disposition of transporter substrates rely on the incorporation of
empirical scaling factors (Varmaet a., 2015a). Although scaling factors have allowed for predictions of the
kinetics of anumber of uptake transporter substrates (Gertz et al., 2014; Jamei et al., 2014; Kudo et al., 2013;
Varmaet a., 2012, 2014, 2015b), it is not possible to experimentally verify whether unbound ti ssue exposures
are adequately predicted (Chu et al., 2013; Jones et al., 2015; Varmaet al., 2015a). This could have important

implicationsfor IVIVE of efflux clearance, metabolism-transporter interplay and predictions of

pharmacological effect. The utility of PBPK modeling in the prediction of therapeutic protein disposition is still

relatively limited as discussed in a recent white paper (Jones et al., 2015). While a number of PBPK models
have been used to accurately predict the kinetics of monoclonal antibodies (Baxter et al., 1995; Cao and Jusko,
2014; Chetty et al., 2015; Elmeliegy et al., 2014; Ferl et al., 2005; Li et al., 2014a; Shah and Betts, 2012; Zhao
et a., 2015), model structures are inconsistent (Chetty et al., 2012; Jones et a., 2015). Limited data on target
expression and changes in disease populations result in the risk for overparameterization with PBPK models,
and thusthere is an effort to move towards reduced PBPK models for therapeutic proteins (Chetty et al., 2015;

Diao and Melbohm, 2015; Elmeliegy et a., 2014; Li et al., 2014a).

Another current challenge in the PBPK modeling field is determining how to assess modd quality. To
date, neither the FDA nor EMA have issued aformal guidance regarding model quality assessment during

regulatory review. However, the FDA has acknowledged the use of the best practice methods proposed by the
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World Health Organization International Programme for Chemical Safety (World Health Organization, 2010;
Zhao et al., 2012b). These practices include ensuring the physiological plausibility of the input parameters,
demonstrating the ability of the model to predict the pharmacokineticsin an independent data set, and
confirming that sensitivity and uncertainty analysis support the mode quality. The recommendation to establish
aguiddine for reporting a qualification of PBPK models was made at the 2014 MISG New Technologies
Forum on Physiologically Based Modeling and Simulation (Ministerial Industry Strategy Group, 2014) and the
EMA released a concept paper on the reporting and quality assessment of PBPK models with the goal of
publishing adraft guidance in 2015 (European Medicines Agency Committee for Medicinal Products for
Human Use, 2014). However, while some basic guidelines for assessing model quality prior to regulatory
review are accepted or in development, no standards exist for how model quality should be evaluated in peer-
reviewed publications. Additionally, no formal analysis of the literature has previously been performed to

evaluate what quality assessment methods are typically used in peer-reviewed publications, if any.

Despite the growth of the PBPK modeling field and the well-established use of PBPK modelsin
regulatory submissions, the overall public availability of PBPK modelsis unclear and the breath of use of PBPK
modeling by the research community has not been systematically evaluated. The PBPK models used in
regulatory submissions are not publically available to the outside research community, which prevents the broad
use of models that have been accepted by regulatory agencies. Furthermore, the applications of the modelsin
regulatory submissions may be driven primarily by the needs of drug developers and may not reflect how PBPK
modeling is used in the larger research community. Identifying and compiling alist of the publicly available
models could be beneficial to future research efforts since published models could be used either unchanged, or
as a starting point in future modeling efforts. Furthermore, determining the common applications of the
published PBPK models will provide insight into current modeling interests as well as highlight under-
represented applications. This review evaluates recent PBPK publications and identifies the common

applications of PBPK modeling, how models are typically developed, ways in which model quality is assessed
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and provides alist of publically available PBPK models with focus on enzyme probes and marker substrates

and important perpetrators of DDIs.

Literature search strategy

PubM ed searches were conducted using the search terms PBPK and physiologically based
pharmacokinetic model within the abstract or title of the manuscript. Papers were selected for review if they
were published in English between 2008 and May 20, 2015 and focused on PBPK modeling of pharmaceutical
agentsin humans. The number of papers referenced is likely an underrepresentation of the overall body of
literature on PBPK modeling due to the strict search criteriaand the search terms used. Publications were
categorized as areview, commentary, |letter to the editor, or an original data paper containing one or more
PBPK models. Papers that focused on the development of new modeling software or a modeling strategy were
classified as prediction method papers. Original data papers were further categorized by the primary application

of the mode!s.

Modelsfor FDA and EMA recommended probe substrates, inhibitors and inducers (European Medicines
Agency Committee for Medicinal Products for Human Use, 2012; U.S. Food and Drug Administration Center
for Drug Evaluation and Research (CDER), 2012) were identified within the original data papers. Complete
lists of the compounds recognized by the regulatory agencies are shown in Supplemental Tables1 and 2.
Models for these compounds were included in our analysisif 1) they were original published models, 2) enough
information was provided to allow for replication of the model in an appropriate software program and 3) the
simulation results were compared to observed in vivo data. A number of models were excluded because they
were default library filesin a simulation software package, the model input parameters were not reported or the
simulation results were not compared to in vivo data. Compound models were categorized as substrates,
inhibitors and/or inducers based on their classification in the FDA or EMA DDI guidance (European Medicines

Agency Committee for Medicinal Products for Human Use, 2012; U.S. Food and Drug Administration Center
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for Drug Evaluation and Research (CDER), 2012) if the model was built with the clearance pathways or
interaction parameters that permitted it to be used for the specified purpose. Models for FDA substrates,
inhibitors and inducers that lacked the appropriate clearance pathways or inhibition/induction parameters to
allow them to be used according to their FDA or EMA classification were placed into a category of their own.
For each FDA and EMA recommended substrate, inhibitor or inducer that met the search criteria, information
regarding the ssimulated formulation, genotype, and software used was extracted. Furthermore, the source of the
clearance input parameter (in vitro or in vivo), the type of independent quality assessment data set used and the
apriori model acceptance criteria were collected. Finally, the type of mode (full or minimal PBPK) was
determined. PBPK models were considered to be minimal if the model included no more than 5 compartments
including the gastrointestinal tract, blood, liver, and up to two additional compartments. More complex models

were considered to be “Full PBPK™.

PBPK Modeling Articlesby Year and Application

A total of 366 PBPK-related articles meeting our search criteria were published since 2008. Whileit is
unlikely that the literature search identified all of the papers presenting PBPK modeling in the literature, the
search likely provides adequate and representative coverage of the existing models and practices. The number
of articles published per year rose steadily with time from 9 articlesin 2008 to 94 articles published in 2014
(Figure 1A). Of the papersidentified, 74% were original data papers that included one or more PBPK models
while 26% were reviews, commentaries, letters to the editor or prediction methods papers. The original data
papers were analyzed in order to identify the common applications of PBPK models. The distribution of the
model applicationsis shown in Figure 1B. The published PBPK models were most commonly used for DDI
predictions (28%). The mgority of the DDI prediction models were used to simulate P450-mediated DDIs
(81%), while the remainder of the models focused on transport DDIs (10%) or a combination of P450 and
transporter mediated interactions (10%). Additionally, models were commonly used to predict interindividual

variability and general clinical pharmacokinetics (23%), absorption kinetics (12%) and age related changes in
12
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pharmacokinetics (10%). Thisdistribution of mode applicationsis distinctly different from what has been
reported for regulatory submissions to the FDA. The models included in FDA regulatory filings were primarily
used for DDI predictions (60%), followed by pediatrics (21%) and absorption (6%) predictions (Pan, 2014).
Based on this analysis the use of PBPK modeling to evaluate interindividual variability and overall drug
disposition characteristics is far more common in the broader research community than in regulatory review.
This difference reflects the fact that both the FDA guidance on pediatrics (U.S. Food and Drug Administration
Center for Drug Evaluation and Research (CDER), 2014) and DDIs (U.S. Food and Drug Administration Center
for Drug Evaluation and Research (CDER), 2012) include PBPK modeling as a potentially useful tool for
guiding clinical study design but PBPK modeling is currently not included in FDA guidance on bioequivaence

or first in human studies.

Published Modelsof FDA and EMA Recommended Substrates, | nhibitorsand Inducers

Each of the 271 original data papers identified included at least one PBPK model of a pharmaceutical
agent. The majority of the papersincluded models of approved drugs while only 21 papers (8%) used PBPK
modeling to simulate the pharmacokinetics of drugs in development. The published PBPK models included
default models from software libraries, as well as original models. Of the published original models, the models
for FDA and EMA recommended sensitive substrates, inhibitors and inducers were further evaluated. While
these models only represent a fraction of the published PBPK models, these compounds represent a group of
drugs for which PBPK models are particularly useful, since the models can be used in DDI predictions or to
validate altered expression levels or activity of transporters and enzymes in new physiological models. 56
papers were found that included models for FDA and EMA listed sensitive substrates, inhibitors and inducers.
In these papers, 107 original models representing 61 different compounds were identified. These models were
analyzed to gain insight into how peer reviewed models are commonly developed and how authors assess
overall model quality. For each model, information about model development was documented, including the

software used, the complexity of the model (full or minimal PBPK), the source of the clearance input value and
13
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the type of dosing smulated. Additionally, information regarding model quality and quality assessment was
documented, including whether the smulated population matched the observed population, if an independent
dataset was used to verify model quality and the type of criteria authors used to determine if amodel
performance was acceptable. The compounds modeled, the model development methods and quality

assessment criteriaare provided in Tables 1-6 along with references to the original publications.

How were the model s devel oped?

PBPK models can vary in complexity from full PBPK models where all of the distribution organs and
tissues are represented as separate perfused compartments to more ssimplified, minimal PBPK modelsin which
tissues with similar kinetics are lumped (Bois et al., 2010; Cao and Jusko, 2012; Leahy, 2003; Nestorov et al.,
1998; Parrott et al., 2005; Pilari and Huisinga, 2010; Tsamandouras et a., 2013). The majority of the models for
the FDA and EMA substrates, inhibitors and inducers listed in Tables 1-6 were full PBPK models (72%) as
opposed to minimal PBPK models (27%). Full PBPK models will typically fit the experimental data better than
minimal models due to the larger number of parameters used, which increases the degrees of freedom in the
model. Yet confidence in any individual parameter is decreased when moving from minimal to full PBPK
model. Minimal PBPK models can be used to reduce model complexity while still allowing for mechanistic
simulations in only the compartments of interest (Cao and Jusko, 2012; Nestorov et al., 1998; Pilari and
Huisinga, 2010; Tsamandouras et al., 2013). One advantage of full PBPK modeling is the ability to simulate the
exposure of a drug or its metabolites in specific tissues that are not accessible to clinical sampling. This can be
particularly important if the pharmacological or toxicological effects are driven by the concentrationsin that
tissue (Tsamandouras et al., 2013). However, none of the models listed in Tables 1-6 and only 13 of the 271
original data papers used simulated tissue concentrations to address pharmacol ogy and toxicology questions
(Table 7). Instead, full PBPK models were generally used to enable the systematic prediction of distribution
kinetics to simulate plasma concentration-time profiles. All of the models that were used to smulate kineticsin

special populations in which distribution kinetics can be highly altered, such as pediatrics and pregnancy,
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incorporated full PBPK models. Full PBPK was also used in al but two of the models for transporter substrates

and inhibitors due to the need to capture permeability rate limited processes.

PBPK models are comprised of system-specific parameters and drug-specific parameters. System
specific parameters include blood flow, organ volumes, enzyme and transporter expression, and plasma protein
concentrations (Galetin, 2014; Jamel et al., 2009a; Rowland et al., 2011). Drug-specific parameters include
intrinsic clearances, volume of distribution, solubility and physicochemical parameters, tissue partitioning,
plasma protein binding affinity and membrane permeability. As aresult, drug-dependent parameters are
independent of the system parameters, allowing for mechanistic extrapolation of human pharmacokinetics from
invitro and in silico datain a “bottom-up” approach (Galetin, 2014; Jamei et al., 2009a; Rostami-Hodjegan et
a., 2012; Rowland et al., 2011; Tsamandouras et al., 2013). While “bottom-up” approaches are generally
considered to be more mechanistic, in many cases sufficient in vitro data or characterization of all drug
elimination pathways is not available to allow bottom-up predictions, or existing in vitro data does not predict in
vivo disposition well enough. Similarly, in many cases, the knowledge of the biological system istoo limited to
allow for “bottom-up” predictions of disposition kineticsin the population of interest. The “bottom-up”
approach is usually not the method of choice in situations where PBPK models are built to specifically evaluate
the disposition characteristics of a drug that has been administered to humans or to a special population. In
these situations, the moded is built to fit the data rather than for predictive IVIVE purposes and a combination of
“top-down” and “bottom-up” approachesis often used. Several reviews have provided excellent discussions of
the utility and setbacks of these combination or “middle-out” approaches to model development (Jamei et al.,
2009z; Li et a., 2014b; Tsamandouras et a., 2013). In general, when using middle-out approaches, in vitro
intrinsic clearances are back- calculated from in vivo clearance by assigning the fractions of thein vivo
clearance associated with each clearance pathway, or scaling factors are assigned to the in vitro or in vivo

clearance value(s) in order to accurately predict the observed data. Parameter estimation methods and

15

20z ‘0T |udy UoSeUINOr 13dSY e BIosfeuIno fipdsepuwip Woly papeojumod


http://dmd.aspetjournals.org/

DMD Fast Forward. Published on August 21, 2015 as DOI: 10.1124/dmd.115.065920
This article has not been copyedited and formatted. The final version may differ from this version.

DMD #65920
sengitivity analysis can also be used in instances where in vitro datais unavailable and in vivo f,, s are not

known.

For the models shown in Tables 1-6, in vitro clearance values (bottom-up approach) were used for
clearance parametersin 35% of the cases. The most common alternative to VIV E was back-calculating in vitro
intrinsic clearance data from in vivo clearance (21%). Because this approach incorporates the fractional
contribution of individual enzymes into the model, models developed using this technique can potentially be
used to simulate pharmacokinetics in situations where enzyme expression levels or activity are altered.
However, the reliability of the back-calculations to capture the true intrinsic clearances requires knowledge of
the fractional contribution of each enzyme to in vivo clearance and an understanding of the true systemic
clearance and bioavailability, which may not be available. 18% of the models used in vivo clearance as an
input parameter. While this can be areliable way to ensure that the total body clearance is captured, no specific
elimination pathways are accounted for and thus the model is not useful for predicting the effects of an inhibitor
or inducer, or the consequences of changes in enzyme or transporter expression levels. In 17% of the models, a
scaling factor was applied to the in vitro or in vivo clearance value(s) in order to accurately predict the observed
data. Scaling factors were particularly common for transporter substrates, likely due to the current limitationsin
IVIVE of transporter-mediated clearance (Harwood et al., 2013; Li et al., 2014b). Finally, parameter estimation
methods and sensitivity analysis were performed to determine the in vitro CL values required to capture the true
in vivo clearance for 9% of the models. While these approaches can permit extrapolation to observed in vivo
clearance, caution should be exercised when estimating input parameters. In cases wherein vitro parameter
values and their variability are well understood, low prediction success could indicate that the model islacking

acritical pharmacokinetic process (Jones et a., 2015; Tsamandouras et al., 2013)

What Makes a Good Model and How is Model Quality Assessed?
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Best practices of model assessment have been proposed by the World Health Organization (World
Health Organization, 2010) and have been discussed in the context of regulatory review (Caldwell et al., 2012;
European Medicines Agency Committee for Medicinal Products for Human Use, 2014; Ministerial Industry
Strategy Group, 2014; Zhao et a., 2012b). However, no requirements or guidelines exist regarding how to
determine the quality of a PBPK model in general research applications and prior to publication. In regulatory
guidance the criteria for assessing moddl validity is often presented in the context of whether the model meets
the performance requirements for its specific purpose. However, in the research literature the specific goal or
purpose for the model is often not specified, and PBPK modeling is frequently used to explain observed clinical
findings or to support a particular mechanistic hypothesis rather than predict drug disposition in a specific
population or clinical situation. In order to establish the scope of current practices in the PBPK models that have
been published for various purposes and applications, an evaluation of the current state of model devel opment
and quality assessment was conducted. The compound models listed in Tables 1-6 were assessed to 1) identify
the criteriathat were typically used in peer-reviewed publications to determine if a model was adequate and 2)

determine if models were tested against multiple in vivo data sets.

It is consdered good practice to assess the quality of a model against in vivo data that was not used in
the model development process and in situations where one of the parametersis altered, such asin a DDI or an
alternative genotype population (Jones et a., 2015; McLanahan et a., 2012; Sinha et al., 2014; World Health
Organization, 2010; Zhao et al., 2012b). Our analysis revealed that the pharmacokinetic ssmulations of 97% of
the models were compared to pharmacokinetics in independent study populations. When an independent
dataset was used to test amodel, the dataset typically described the pharmacokinetics after a single dose or DDI,
or for an alternative population, formulation or dosing regimen. The distribution of the types of in vivo data
sets used to assess the quality of the modelsis shown in Figure 2A. Most of the models were assessed using
multiple types of data sets (57%), DDI data (15%) or pharmacokinetic datafrom alternative populations (9%).

Only 3% of the models were not compared to an independent data set. However, despite the fact that most
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models were assessed against data that was not used in model development, the smulated populations were
rarely matched with the population demographics of the clinical study subjects, or the population demographics
used in the simulations were not reported (Tables 1-6). The simulated age, gender and genotypes were reported
to match the observed population for only 32% of the models. Additionally, the simulated genotypes were only
specified for 21% of the models. It is possible that the demographics of the clinical study and the smulated
population were matched in many of the papers but not reported. However, reporting the strategy for how the
simulated popul ations were made to reflect the observed would provide greater confidence for the reader that
the ssimulated population was reasonably representative of the true observed population. The population
specific parameters used in PBPK models such as enzyme and transporter abundance, organ volume, blood
flow, plasma protein binding and glomerular filtration rate are dependent on the population demographics such
as age, gender, genotype and disease state. Similarly, the interindividual variability in the physiological
parameters is dependent on the population demographics. Thus, ensuring that the demographics of the
simulated population match those of the observed population may improve the accuracy of both mean PK
parameters (Steere et al., 2015) and predicted population variability. More careful reporting of the simulated
and observed study populations would also be critically important when model performance is assessed. As has
been highlighted in the literature (Abduljalil et al., 2014), PBPK simulations are often compared to clinical
studies with small study populations, and the true inter- and intra-individual variability of the observed PK
parameters of the compound of interest are not known. This can lead to a situation in which one clinical study
does not accurately predict the PK parameters observed in another study with the same compound (Abduljalil et
a., 2014). In such situations, a PBPK model cannot meet the common acceptance criteria for both studies
simultaneously. Y et, the simulated population variability was rarely compared to the observed in the literature
evaluated, and we found no papers in our analysisin which apriori model acceptance criteria were driven by
knowledge of the variability in the PK parameters of the drug of interest in the target population. The 90%

confidence interval is, however, generally shown in smulated plasma concentration-time curves (Jones et al.,
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2015), and several studies used the simulated 90% confidence interval of the plasma concentration curves as a

criterion for model acceptance (Bui et al., 2015; Chetty et al., 2015; Sager et al., 2014).

Determination of model performance was inconsistent and largely subjective in amajority of the papers.
In 56% of the published modelsin Tables 1-6, the authors did not specify apriori a criterion by which they
would decideif their model was successful or not (Figure 2b). A recent publication from the 1Q PBPK
working group suggests that criteria should be predefined regarding whether amode! is fit-for purpose (Jones et
a., 2015). However there is no consensus on what criteria should be applied for the different modeling
purposes. The 1Q working group suggested that for drugs with a broad therapeutic window, a common 2-fold
criteriafor the model would be acceptable, but for drugs with narrow therapeutic index more stringent criteria
would be appropriate (Jones et al., 2015). On the other hand for PBPK models used for risk assessment, the IQ
proposed that acceptance criteria should reflect the effect of accuracy on dose selection. Yet, this
recommendation is not consistent with the methods used to evaluate model performance in the literature.
Overdl, in the papers (Tables 1-6) in which the acceptance criteria were specified a priori, 4 standard choices
were employed for model acceptance. For 22% of the models, the authors specified that predicted
pharmacokinetic parameter(s) (i.e. AUC, Csavg, Cmax) N @given population must be within 2-fold of the
observed value in order for the model to be considered acceptable. In 7% of the cases, predicted mean
pharmacokinetic parameters were required to be within 25-30% of the observed mean. In addition, for 10% of
the models, the predicted fold changein AUC or Cax between different ssmulated populations or study
conditions had to be within 2-fold of the observed fold change for the model to be acceptable. Finally, for 4%
of the models, the authors specified that the predicted fold change in AUC and Crax Needed to be within 30% of
the observed fold-change. When the acceptance criteria were analyzed according to the types of applications, a
more striking discrepancy with the proposed guidance was observed (Figure 2C). For models built for narrow
therapeutic index drugs only 17% (2 papers) used a 30% difference as the standard for model acceptance. 50%

(6 papers) of the papers had no criteria and 33% (4 papers) considered a 2-fold difference to be an acceptable
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criteriafor these drugs. Similarly, for P450 sensitive substrates, which are expected to clinically report on <2-
fold changes in clearance, only 3% (1 paper) used <30% difference in fold change as an acceptance criteria for
the PBPK models, and 42% (13 papers) considered <2-fold difference in PK parameters or in fold changes
acceptable. 16% of the papers (5 papers) used the <30% difference in PK parameters as an acceptance criteria
for P450 sengitive substrates. For P450 inducers, there were no models that required a <30% difference in PK
parameters and for transporter substrates, inhibitors and inducers, nearly all papers (84%) had no specified
acceptance criteria. Taken together, this data suggests that there is alack of consistency in model quality
assessment, which does not reflect the different purposes for which the models were developed. The data also
suggests that there is a need for more rigorous evaluation of model quality assessment during peer review. The
issue of the lack of strict peer review requirements for published models has been discussed previously in the

literature (McLanahan et al., 2012), but it has not been formally addressed by the larger research community.

Based on the analysis of the PBPK models used to simulate drug absorption, more stringent criteria of
model assessment were used in thisfield, likely adapted from bioequivalence standards. For some absorption
models, model performance was determineto be high if error was <25%, medium if error was 25-50%, low if
error was 50%-2-fold and inaccurate if error was >2-fold (Sj0gren et al., 2013). Importantly, many of the
absorption models systematically evaluated mode performance in terms of the plasma concentration-time
curves rather than specific PK parameters using a similarity factor (f1 or f,) to calculate the % difference
between the smulated and measured plasma concentrations at each measured time point (Fei et a., 2013;
Kambayashi et a., 2013; Shono et al., 2009; Wagner et al., 2012; Wang et a., 2013a). In addition, many
absorption models were evaluated using statistical criteria such as linear regression between observed and
predicted parameters or concentrations and method of residuals (Kambayashi et al., 2013; Shono et al., 2009;
Turner et al., 2012). A critical model evaluation criterion used in some studies evaluating PBPK models of
biologics (Cao et al., 2013; Kletting et a., 2010) was discrimination between different models using statistical

criteriathat account for the added degrees of freedom in the model. The Akaike information criterion and
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correlation analyses were used to specifically differentiate between developed PBPK models and identify the
model that best fitted the observed data (Cao et al., 2013; Kletting et a., 2010). Adaptation of some of these
methods and criteriainto PBPK modeling in other research areas may provide good standardization of model

acceptance criteria.

Conclusions

PBPK modeling isincreasingly being used in peer-reviewed publications to provide mechanistic
predictions of pharmacokinetics and disposition in diverse populations and dosing regimens. Since 2008, 106
models of sensitive substrates, inhibitors and inducers have been published, with applications ranging from
DDIsto pregnancy. However, thereis arelative lack of consistency in how models are devel oped and how
model quality is assessed. Published models use “bottom-up”, “top-down” and “middle-out” approaches to
estimate clearance input values and vary in complexity. While model performance was found to be tested
against model-independent data sets 97% of the time, model acceptance criteria and the extent to which the
simulated populations reflect the observed population were not always specified. Thorough and consi stent
reporting of model development techniques and quality assessment could increase reader confidence and result
in more widespread acceptance of published models. Thus, the development of best-practice guidelines for
peer-review submissions might be beneficial. Table 8 includes suggestions for the information that should be
included in peer-reviewed publications containing PBPK models. These suggestions are consistent with best-
practice guidelines for regulatory review (European Medicines Agency Committee for Medicinal Products for
Human Use, 2014; Ministerial Industry Strategy Group, 2014; World Health Organization, 2010; Zhao et al.,
2012b), but also acknowledge that guidelines for peer-reviewed models may not require the same degree of

reporting detail as what has been proposed for regulatory submissions.
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Figure Legends

Figure 1. Summary of the PBPK literature analyzed. Panel A shows the number of articles per year that
contain one or more PBPK models of pharmaceutical agentsin humans. Panel B shows the distribution of the

PBPK model applicationsin the original data papers.

Figure2: Summary of the model detailsin the evaluated literature. The distribution of the acceptance
criteriaused in PBPK models of FDA probe substrates and inhibitorsis shown in panel A. All publications
included in the analysis contained models that were verified against in vivo data. The types of in vivo data sets

used to verify the quality of the models are summarized in panel B.
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Table 1. P450 Senstive Substrates

o Minimal oral Simulated Age, sex, . |Acceptance o
Enzyme Compound  |Application or Full or 1V Clearance® genotype genotypeb Verification® Criterig® Softwar €° Citation
PBPK specified? matched?
CYP1A2 Caffeine Allometry Full Oral SF No N.S A,D 1 PK Sm (Thiel et al., 2014)
Efavirenz DDI Minimal | Oral | Invitra Yes N.S A E 1 Simeyp (Siccardi et al., 2013)
CYP2B6 Efavirenz DDI Full Ora | Invitro Yes S D.,E 1 Simeyp (Rekic et a., 2011)
Efavirenz Absorption|  Full Ora | Invitra No N.S B 5 Matlab (Rajoli et d., 2014)
CYP2CS Repaglinide Diabetes Full | Oral | Invitro No N.S. B,D 3 WinNonlin (Li et a., 2014b)
Repaglinide RI Full Oral BC Yes N.S. D 1 Simeyp (Zhao et al., 2012a)
Repaglinide DDI Minimal | Ora PE No N.S B, E 1 Napp (Kudo et al., 2013)
Repaglinide DDI Full Oral BC No N.S C,E 1 Simeyp (Varmaet al., 2013)
CYP2C19 Clobazam Pediatrics Full Ora | Invitra No N.S. B,D,E 1 Matlab (Ogungbenro and Aarons, 2015)
Omeprazole | Clinical PK | Minimal | Both BC Yes N.S. B.E 1 Simcyp (Wu et d., 2014)
Metoprolol Pregnancy | Full | Ora |Invitro, SF|  Yes S G D,E 2 Simcyp, Matlab (Keet a., 2013b)
CYP2D6 |Dextromethorphan| Pregnancy | Full | Ora PE No S G D,E 2 Simcyp, Matlab (Keet d., 2013b)
Dextromethorphan, Allometry Full Oral SF No N.S AD 1 PK Sim (Thiel et al., 2014)
Alfentanil DDI Full Oral BC No N.S. C.E 5 Gastroplus (Baneyx et al., 2014)
Alfentanil DDI Full | Oral | Invitro No N.S. E 5 WinNonlin (Guo et d., 2013)
Buspirone DDl Full Ora | Invitra No N.S. E 5 WinNonlin (Guo et al., 2013)
Indinavir Pregnancy | Full | Both |Invitro, SA|  No S CD,E 2 Simcyp, Matlab (Keetd., 2012)
Maraviroc DDI Minimal | Oral | Invitra No N.S. AE 1 Simeyp (Hyland et al., 2008)
Midazolam Pregnancy | Full Ora | Invitra No S A,D 2 Simeyp, Matlab (Keetad., 2012)
Midazolam DDI Full | Ord BC No N.S CD 5 Gastroplus (Baneyx et al., 2014)
CYP3A4 Midazolam DDl Full Oral PE No N.S A 4 Berkeley M. (Brantley et al., 2014)
Midazolam Pregnancy | Full | Ora | Invivo No S B,D 3 Gastroplus (Xiaet a., 2013b)
Midazolam DDI Minimal | Oral | Invitra No N.S. E 5 WinNonlin (Wang et al., 20133)
Midazolam DDI Full Ora | Invitra No N.S. E 5 WinNonlin (Guo et al., 2013)
Midazolam Allometry | Full | Ord SF No N.S A,D 1 PK Sim (Thiel et al., 2014)
Quetiapine Pediatrics | Both | Oral BC No A,'S D,E 1 Simeyp (Johnson et al., 2014)
Silden&fil RI Full | Ord BC Yes N.S. D 2 Simcyp (Zhao et al., 20124)
Simvastain DDI Full Ora | Invitro No N.S. E 5 WinNonlin (Guo et al., 2013)
Simvastatin DDI Minimal | Oral | Invitra No N.S. A E 5 WinNonlin (Wang et al., 2013a)
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Triazolam DDI Full Ora | Invitra No N.S. E 5 WinNonlin (Guo et al., 2013)
Triazolam DDI Full Oral BC No Gastroplus (Baneyx et al., 2014)

& BC= back-calculated from in vivo data, PE= parameter estimate, SA= sensitivity analysis, SF= scaling factor from mice. ° Age, sex and genotype are denoted as A, Sand G,
respectively. N.S.= not specified. °Data sets used in model verificationincluded: (A) Single dose PK, (B) dternative dosing regimen, (C) alternative formulation, (D) alternative
population, (E) DDI.  Acceptance criteriafell into 5 categories: (1) Not specified, (2) Ratio of PK parameter(s) must be within 30% of observed, (3) Ratio of PK parameter(s)
must be within 2 fold of observed, (4) PK parameters must be within 30% of observed, (5) PK parameters must be within 2 fold of observed. ® Berkeley M= Berkeley Madonna
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Table2: Summary of PBPK models published for narrow therapeutic index substrates

o e 520 |3 o P O T i
Modd | IV or genotype | genotype Acceptance
Compound | Application| Type | Oral |Clearance?| specified? | matched?’|Verification®| Criteria® Softwar € Citation
CYP1A2 Theophylline | Pregnancy Full Oral BC No S B,D 2 Simcyp, Matlab (Keet a., 2013b)
Theophylline DDI Minimal | Both Invitro No N.S. B, E 1 Matlab (Panetal., 2011)
CYP2C9 Phenytoin | Clinical PK | Minimal | Oral Invitro Yes A'S G B 1 Simcyp (Polasek et al., 2009)
Warfarin DDI Full Oral PE No A S G A 4 Berkeley M. | (Brantley et al., 2014)
Cyclosporine | Pediatrics Full IV |Invivo, SF No A C 1 Adaptl| (Gérard et al., 2010)
Cyclosporine DDI Full Ora Invitro No N.S. E 5 WinNonlin (Guo et al., 2013)
Cyclosporine DDI Full Both PE No N.S. C E 5 Matlab (Gertz et a., 2013)
CYP3A4 Cyclosporine | Allometry Full Oral SF No N.S A,D 1 PK Sim (Thiel et al., 2014)
Quinidine DDI Full Ora Invitro No N.S. E 5 WinNonlin (Guo et al., 2013)
Srolimus | Clinical PK Full Ora |Invitro, PE No A, S B,D,E 1 Simeyp (Emoto et al., 2013)
Tacrolimus DDl Full Oral Invitro No N.S. E 5 WinNonlin (Guo et d., 2013)
Tacrolimus | Clinical PK | Minimal | Oral BC Yes A S G D, E 1 PK quest (Gérard et al., 2014)

& BC- back-calculated from in vivo data, PE= parameter estimate, SF= scaling factor. ° Age, sex and genotype are denoted as A, S and G, respectively. N.S.= not specified.

°Data sets used in model verification included: (A) Single dose PK, (B) alternative dosing regimen, (C) alternative formulation, (D) alternative population, (E) DDI. ¢ Validation
Criteriafell into 5 categories. (1) Not specified, (2) Ratio of PK parameter(s) must be within 30% of observed, (3) Ratio of PK parameter(s) must be within 2 fold of observed, (4)
PK parameters must be within 30% of observed, (5) PK parameters must be within 2 fold of observed. ¢ Berkeley M= Berkeley Madonna
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Table 3. PBPK modelsand model detailsfor recognized P450 inhibitors

Minimal Oral Additional Simulated Age, sex,
or Full  or Inhibition | genotype genotype Acceptance
Enzyme Compound Application PBPK = |V Clearance® Parameters specified? matched?® Verification® Criteria® Softwar e Citation
Strong I nhibitors
CYP2C8 Gemfibrozil DDI Minimal Oral PE CYP3A4 No N.S. A B E 1 Napp (Kudo et al., 2013)
Paroxetine | Pregnancy Full | Ord Invitro CYP3A4 Yes S G D, E 2 Simeyp, Matlab . (Keet al., 2013b)
CYP2D6 . - . CYPIA2 . .
Fluoxetine DDI Minimal Oral Invitro CYP2C9 Yes N.S. E 1 Simeyp (Siccardi et al., 2013)
CYP2C19
Clarithromycin ~ DDI Minimal Ora Invivo - Yes A S G A /B E 3 Simeyp (Wang, 2010)
Clarithromycin ~ DDI Minimal Ora Invivo - No A S G B, E 3 Simeyp (Xu et d., 2009)
Itraconazole DDI Minimal Ora PE - No N.S. A B, E 1 Napp Kudo et a., 2013
. . - . CYP2C9 : ' )
cypaasa  Ritonavir DDI Minimal Oral Invitro CYP2D6 Yes N.S. A E 1 Simeyp (Siccardi et al., 2013)
CYP3A5
Ritonavir  Clinical PK Minimal Oral Invitro CYP2D6 Yes N.S. D 1 Simeyp (Kasperaet a., 2014)
CYP2J2
Telithromycin RI Full | Ord BC P-gp Yes N.S. D, E 1 Simeyp (Zhao et d., 2012a)
. . P-gp : -
Telithromycin DDI Full  Ord BC CYP3A5 No N.S. A B E 1 Simeyp (Vieiraet ., 2012)
M oder ate Inhibitors
; CYP2D6 .
CYP2C9| Amiodarone DDI Full  Both BC CYP3A4 No N.S. A E 1 Simeyp (Chen et al., 2015)
CYP2C19| Omeprazole Clinica PK Minimal Both BC - Yes G B,D,E 1 Simeyp (Wu et ., 2014)
Diltiazem DDI Minimal Ora Invivo - No A S G B, E 3 Simeyp (Xu et d., 2009)
Diltiazem DDI Minimal Ora Invitro - No N.S. A B, E 1 WinNonlin (Zhang et al., 2009)
Diltiazem DDI Minimal Oral Invivo CYP2D6 No A, S B 1 Simeyp (Friedman et al., 2011)
CYP3A4 Erythromycin DDI Minimal Ora Invivo CYPpP2Cs8 No A S G B, E 3 Simeyp (Xu et a., 2009)
Verapamil DDI Minimal Oral Invitro OCXTPszBSl No N.S. A /B,CE 5 WinNonlin (Wang et al., 2013a)
V erapamil DDI Full  Ord BC - No A, S A E 1 Simeyp (Neuhoff et a., 20133)
Verapamil DDI Minimal Ora Invivo - No A S G B, E 3 Simeyp (Xu et a., 2009)
Weak | nhibitors

CYP2C8 | Trimethoprim DDI Minimal Oral Invivo - E 1 Simeyp (Yeo et a., 2013)
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3 PE= parameter estimation from in vivo data, BC= back-calculated from in vivo data. ® Age, sex and genotype are denoted as A, Sand G, respectively. N.S.= not specified.
° Data sets used in model verification included: (A) Single dose PK, (B) alternative dosing regimen, (C) alternative formulation, (D) alternative population, (E) DDI. ¢ Validation

Criteriafell into 5 categories. (1) Not specified, (2) Ratio of PK parameter(s) must be within 30% of observed, (3) Ratio of PK parameter(s) must be within 2 fold of observed, (4)
PK parameters must be within 30% of observed, (5) PK parameters must be within 2 fold of observed.
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Table4: PBPK models published for P450 inducers

Simulated | Age, sex,
Modée IV or genotype | genotype Acceptance
Enzyme| Compound | Application| Type Oral | Clearance® specified?  matched?® Verification® Criteria® | Software Citation
CYP2B6 Efavirenz DDI Minimal | Oral In vitro Yes N.S A E 1 Simcyp | (Siccardi et a., 2013)
and Efavirenz | Absorption | Full Oral In vitro No N.S. B 5 Matlab | (Rajoli et al., 2014)
CYPaAd Efavirenz DDI Full Oral Invitro Yes S D, E 1 Simeyp | (Rekicetal., 2011)
Carbamazepine DDI Full Oral In vitro No N.S. B,E 5 WinNonlin (Guo et al., 2013)
Etravirine | Absorption | Full Oral In vitro No N.S. B 5 Matlab | (Rajoli et al., 2014)
CYP3A4  Rifampin DDI Full Oral BC No N.S. E 5 Gastroplus| (Baneyx et al., 2014)
Rifampin DDI Full Oral In vivo No N.S. B,E 5 WinNonlin| (Guo et a., 2013)
Rifampin DDI Full Oral BC No A S G A 1 Simeyp  |[(Neuhoff et al., 2013b)

& BC= back calculated from in vivo data. "Age, sex and genotype are denoted as A, Sand G, respectively. N.S.= not specified. °Data sets used in model verification included: (A)
Single dose PK, (B) dternative dosing regimen, (C) alternative formulation, (D) alternative population, (E) DDI. ¢ Validation Criteriafell into 5 categories. (1) Not specified, (2)
Ratio of PK parameter(s) must be within 30% of observed, (3) Ratio of PK parameter(s) must be within 2 fold of observed, (4) PK parameters must be within 30% of observed, (5)

PK parameters must be within 2 fold of observed.
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Table5: Summary of the PBPK models published for transporter substrates, inhibitorsand inducers

I Minimal | Oral a . .. | Acceptance e o

genotype
matched?
Inducers
P-gP Rifampin Transport | Minimal | Oral BC No A,S A E 1 Simeyp (Neuhoff et al., 2013b)
Inhibitors
OAT1, OAT3 | Probenecid DDI Full Both BC No N.S. C 1 Smcyp (Hsu et al., 2014)
Gemfibrozil DDI Minimal | Oral PE No N.S. A B, E 1 Napp (Kudo et al., 2013)
OATP1B1 : . ' (Varmaet al., 2015a)*
Gemfibrozil | Transport Full Ora BC Yes N.S. 1 Simeyp Updated Varma et dl 2012
Cyclosporine | Transport Full Ora Invivo Yes N.S. A E 1 Simeyp (Varmaet a., 2012)
OATP1B1, 1B3| Cyclosporine | Transport Full Ord BC No A'S G B 1 Simcyp (Jamei et al., 2014)
BCRP Cyclosporine DDI Full Both PE No N.S. C.E 5 Matlab (Gertz et al., 2013)
P-gp V erapamil DDI Full Oral BC No A, S A E 1 Smcyp (Neuhoff et al., 2013b)
Substrates
BCRP Rosuvastatin | Transport Full Ora |BC, PE, SA No A'S B,E 1 Simc (Jamel et al., 2014)
OATP1B1, 1B3 P 5 : ! yp .
OATP1B1, . - . !
OAT3 Pravastatin | Clinical PK Full Both |Invitro, SF No N.S. C 1 Matlab, PK Sm | (Meyer et a., 2012)
Pravastatin Transport Full Both |Invitro, SF No N.S. A B, E 1 Simeyp (Varmaet al., 2012)
Atorvastatin | Absorption Full Oral Invitro No AS D 1 Simecyp (Darwich et al., 2013)
Bosentan Transport Full IV |Invitro, SF No N.S. None 1 Berkeley M. (Joneset al., 2012)
Huvastatin Transport Full IV |Invitro, SF No N.S. None 1 Berkeley M. (Joneset al., 2012)
OATPIB1 Glyburide DDI Full Both Invitro Yes G B,C E 1 Simeyp (Varmaet ., 2014)
Glyburide | Pregnancy Full Oral BC No S B,D,E 2 Simcyp, Matlab (Keet al., 2013q)
Repaglinide | Transport Full IV |Invitro, SF No N.S. None 1 Berkeley M. (Joneset d., 2012)
Repaglinide RI Full Oral BC Yes N.S. D 1 Simeyp (Zhao et al., 2012a)
Repaglinide DDI Minimal | Oral Invivo No N.S. E 1 Napp (Kudo et al., 2013)
Repaglinide DDI Full Both BC No N.S. CE 1 Simeyp (Varmaet a., 2013)
OATP1B3 Telmisartan | Transport Full Both |Invitro, SF No N.S. C 1 Matlab (Li et a., 2014c)
OATP1B1,1B3| Rosuvastatin | Transport Full Both |Invitro, SF No N.S. C 1 ASCLX (Bosgraet a., 2014)
P-gp Dabigatran DDI Full Both | Invitro No N.S. A B E 1 PK Sim (Zhao and Hu, 2014)
Digoxin Transport Full Both BC No A 'S A B 4 Simeyp (Neuhoff et al., 2013b)
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Digoxin Pregnancy Full Oral Invivo No S D 5 Gastroplus (Xiaet d., 2013b)

3 BC= back calculated from in vivo data, PE= parameter estimation, SA= sensitivity analysis, SF= scaling factor. "Age, sex and genotype are denoted as A, Sand G, respectively.
N.S.= not specified . “Datasets used in mode verification included: (A) Single dose PK, (B) alternative dosing regimen, (C) alternative formulation, (D) alternative population,
(E) DDI. “Validation Criteriafell into 5 categories. (1) Not specified, (2) Ratio of PK parameter(s) must be within 30% of observed, (3) Ratio of PK parameter(s) must be within
2 fold of observed, (4) PK parameters must be within 30% of observed, (5) PK parameters must be within 2 fold of observed. ©Berkeley M.= Berkeley Madonna.
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Table6: Summary of the PBPK models published for compoundsthat are FDA probe substrates, inhibitors, or inducers but the models
wer e developed for a different purpose than the FDA category.

Compound Type genotype | Clearance® | Verification age, gender 4 Softwar € Citation
n or IV el Criteria 4
specified? matched?* =z
Alprazolam DDI Full Oral No Invitro E N.S. 5 Winnonlin (Guo et al., 2013) fé
Clopidogrel DDI Minimal | Ord Yes Invitro B, E S 1 Simeyp (Tornio et al., 2014) %
Clopidogrel Genetics Full Oral Yes Invitro B,D, E N.S. 1 Simeyp (Djebli et ., 2015) 3
Lansoprazole | Absorption | Minimal | Oral No Invivo C N.S. 1 Gastroplus (Wuetal., 2013) 3
Metformin ( di(?at)he?eﬁ) Full Ora No invivo D N.S. 3 Winnonlin (Li et al., 2015) g
Metformin Pregnancy Full Oral No Invivo D S 5 Gastroplus (Xiaet d., 2013a) -§
M ethadone Pregnancy Full Oral No BC B,D S 4 Simeyp, Matlab (Keet al., 20133) ‘§_
Nisoldipine ( dgtbkgﬁ) Full Oral No Invivo D N.S. 3 Winnonlin (Li et al., 2015) g
Oseltamivir Pediatrics Full Both No In vitro, SF C,D,E N.S. 1 Gastroplus (Parrott et al., 2011) .
Oseltamivir | Clinical PK Full Oral Yes Invitro D N.S. 1 PK-Sim (Hueta., 2014) %
Oseltamivir RI Full Oral No Invivo B N.S. 1 Simeyp (Hsu et al., 2014) =
Phenobarbital DDI Full Oral No Invivo B.E N.S 5 WinNonlin (Guo et d., 2013) g
Pravastatin | Clinical PK Full v No Invitro, SF C N.S. 1 Berkeley M. (Joneset al., 2012) %
Propranolol | Formulation Full Oral No Invivo B, C N.S. 1 Gastroplus (Wang et al., 2013b) =
Rosuvastatin | Clinical PK Full v No Invitro, SF C N.S. 1 Berkeley M. (Joneset al., 2012) %
Sertraline DDI Minimal | Oral Yes Invitro E N.S. 1 Simeyp (Siccardi et al., 2013) 2
Theophylline DDI Minima | Ord No Invivo B.E A S G 3 Simeyp (Xu et al., 2009) S
Valsartan Clinical PK Full v No Invitro, SF C N.S. 1 Berkeley M. (Joneset al., 2012) 5
Verapamil DDI Full Oral No In vitro E N.S. 3 Winnonlin (Guo et a., 2013) o
Voriconazole | Pediatrics Full Both No In vitro, SF C,D N.S. 1 Simeyp (Zane and Thakker, 2014) g:g"h
Voriconazole DDI Minimal | Oral Yes Invitro E S G 1 Simeyp (Damleet al., 2011) 3
@BC= back calculated fromin vivo data, SF= scaling factor. ° Data sets used in model verification included: (A) Single dose PK, (B) dternative dosing regimen, (C) alternativelz g
formulation, (D) alternative population, (E) DDI. °Age, sex and genotype are denoted as A, Sand G, respectively. N.S.= not specified. ° Validation Criteriafell into 5 categories. <
(1) Not specified, (2) Ratio of PK parameter(s) must be within 30% of observed, (3) Ratio of PK parameter(s) must be within 2 fold of observed, (4) PK parameters must be within %.
>

30% of observed, (5) PK parameters must be within 2 fold of observed. © Berkeley M= Berkeley Madonna
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Table 7: List of compoundsfor which Full PBPK modelswer e used to addr ess phar macological and toxicological questions

A priori criteria?

Model Quality Assessment Conclusions

Citation

¥20¢ ‘0T |udy uosfeunor 1345V e Bio'sjeuinofisdse pwp wouy papeojumoq

Compound M odel purpose
: Assessing various calibration strategies for Qualitative discussion of the agreement . . L
Acetaminophen linking PBPK models to toxicodynamic models No between simulated and observed PK Pr?g'ecr:grj]: I\\//v?trr: %ﬁg{g (Péry et a., 2013)
of hepatotoxicity (Crmax, Metabolite ratios) &
Mann-Whitney test to compare means,
Simulation of receptor occupancy in accute chi-sguare test to compare proportions,| A greater therapeutic index was
Cyclosporine graft-versus-host organs and kidneys after No bias and precision, number of predicted following continuous | (Gérard et al., 2010)
intermittent or continuous infusion simulations within 2-fold of the infusion
observed, weighted residuals
o eﬂabllsh_ aconnection between the likelihood Student's t-test to compare means, chi- | Blood cyclosporine levels can be
. and severity of graft-versus-host disease and . S . .
Cyclosporine : R . No sguare test to compare proportions, | used as an indicator of therapeutic| (Gérard et al., 2011)
cyclosporine exposures in circulation, graft- - .
L AIC for model selection efficacy
versus-host target organs and lymphoid tissues
. . . . . | The model predicted the efficacy
Efalizumab Develop aPD_Ilnked PBPI_( model to predict Yes Observed dataW|tthh|n thg predicted 5 of efalizumab in treatment of (Chetty et ., 2015)
efficacy of efalizumab and 95" centile -
psoriasis
Formamide Develop a PBPK model to evaluate the No 40mg/day dose was proposed (Yanet al., 2012)
relationship between dose and hepatic exposure bases on a safety index "
Levofl . Exploratory study to predict the extent of tissue Levofloxacin penetrated well into
evotioxacin exposure of levofloxacin in humans as a basis for Yes Fold error in PK parameters less than 2| tissues, including the liver kidneys|  (Zhu et al., 2015a)
future PK/PD work. and spleen
Concentrations in intra-abdominal
Moxifloxacin Simulate tissue concentrations versus time in . tissues were predicted to be higher
patients with intra-abdominal infections Yes Fold error in PK parameters less than 2 than in vitro MIC for common (Zhuetal., 20150)
pathogens
Moxif . Usrr:%cFEPrl]( n;%?l]' 2 gﬁ;iﬁgﬁ:ﬂﬁ)ﬁg? of Simulated concentration versustime | Macrophage concentrations are
oxifoxacin acropnay ; No profiles were evaluated for bias and predicted to effect tissue (Edginton et al., 2009)
moxifloxacin to enhance understanding of the L ; : .
effects of disease on PK/PD precision concentration of moxifloxacin
Nicotine Develop a PBPK model to describe nicotine No Qualitative discussion of the agreement fggom?e*'izgtﬂ:\:’eid ftoorr (Teeguarden et al.,
exposure and receptor binding in the brain of the predicted and observed data P . e 2013)
occupancy in the brain
Cenn Predicting brain extracellular fluid
st concentrations as a starting point for PK-PD No - Unclear whether the PBRK model (Ball et al., 2014)
modeling would accurately predict PD
remossiomide | PP inked PBPK modl for simulating the brain edcionswereinclose
emozolomide | ¢oncentration of temozolomide and the levels No ag . had | (Ballesta et d., 2014)
DNA brain adducts parameter estimates had low
coefficients of variation
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Model intra-cellular concentrations of
Zidovudine zidovudine in peripheral blood mononuclear
cells and establish efficacy and toxicity
following various dosing regimens
Theoretical Proof of concept study to evaluate mechanisms
Compounds for differences in unbound plasma and tissue N/A
concentrations

No

PK features are well represented by the

48

predictions

N/A

100mg 4 times daily is predicted to
be the safest and most efficacious
dosing scheme

This approach can be used to
predict free tissue concentrations
of various classes of drugs
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(vonKleist and
Huisinga, 2009)

(Poulin, 2015)
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Table8: List of relevant detailsto report for publication of PBPK models based on the literaturereview.

Objectives

What is the purpose of the model?

Model Acceptance Criteria

What criteria are being used to determine if amodel is “fit-for-purpose”?
What is the clinical relevance of this criteria?
What independent data sets are used for model testing?

Model development

Was the model built using a PBPK software package?
o If not, information regarding the model structure, the source of parameters and their physiological context
should be reported
Input parameters (See Zhao et a 2012 for recommended parameters to include)
What parameters, if any, were estimated using parameter estimation or sensitivity analysis?
o Arethe estimated parameters physiologicaly plausible?
o Arethe parameterswithin the range of previously reported values (if applicable)?
Population demographics (Do the simulated and observed populations and study sizes match?)

M odel Outcomes

Comparison of the predicted and observed PK
Do the predictions meet the predetermined model specification criteria?

M odel Performance

Was sensitivity analysis performed to assess whether model output parameters are sensitive to specific input
parameters? (Yes/No)
What are the verified applications of the model? What is the level of uncertainty in model components?
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Figure 1.

A DMD Fast Forward. Published on Aug]l}JSt 21, 2015 as DOI: 10.1124/dmd.115.065920
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Figure 2.
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