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Abstract 

Overdose of isoniazid (INH), an anti-tuberculosis drug, can be life-threatening because of 

neurotoxicity.  In clinical practice for management of INH overdose and acute toxicity, the 

potential of INH-induced hepatotoxicity is also considered.  However, the biochemical basis of 

acute INH toxicity in the liver remains elusive.  In the current study, we used an untargeted 

metabolomic approach to explore the acute effects of INH on endobiotic homeostasis in mouse 

liver.  We found that overdose of INH resulted in accumulation of oleoyl-L-carnitine and 

linoleoyl-L-carnitinein the liver, indicating mitochondrial dysfunction.  We also revealed the 

interactions between INH and fatty acyl-CoAs by identifying INH-fatty acid amides.  In 

addition, we found that overdose of INH led to the accumulation of heme and oxidized 

nicotinamide adenine dinucleotide (NAD) in the liver.  We also identified an INH and NAD 

adduct in the liver.  In this adduct, the nicotinamide moiety in NAD was replaced by INH.  

Furthermore, we illustrated that overdose of INH depleted vitamin B6 in the liver and blocked 

vitamin B6-dependent cystathionine degradation.  These data suggest that INH interacts with 

multiple biochemical pathways in the liver during acute poisoning caused by INH overdose.   
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Introduction 

Tuberculosis (TB) is a public health problem (Orcau et al., 2011).  In 2012, there were ~8.6 

million incident cases of TB and ~1.3 million TB-associated deaths worldwide (WHO, 2013).  

Isoniazid, also known as isonicotinylhydrazide (INH), is a first-line drug for TB treatment and 

prevention.  With the numbers of patients receiving INH remaining high, the number of acute 

poisoning cases is expected to be significant (Maw and Aitken, 2003).  Accidental or intentional 

overdose of INH causes seizures, metabolic acidosis, coma and even death (Temmerman et al., 

1999; Khoharo et al., 2009).  In adults, the regular dose of INH is 300 mg/day (~5 mg/kg/day).  

Doses over 30 mg/kg/day often produce neurotoxicity and seizures.  It has been estimated that 

INH is responsible for ~5% of all cases of seizures associated with drug intoxications (Olson et 

al., 1993).  When ingested in amounts of 80 to 150 mg/kg/day or more, INH can rapidly be fatal 

because of acute neurotoxicity (Romero and Kuczler, 1998). 

 

Besides neurotoxicity, INH poisoning causes hepatotoxicity.  In a 2-year-old girl who 

accidentally received 2 g of INH, liver function tests were found to be abnormal (Caksen et al., 

2003).  In a 26-year-old man who ingested 8 g of INH, elevation of activities of serum aspartate 

aminotransferase, alanine aminotransferase, gamma-glutamyl transpeptidase, and prolonged 

prothrombin time were observed, suggesting the occurrence of INH-induced acute hepatitis (Tai 

et al., 1996).  A higher dose of INH results in more significant liver injury, as shown by 20-fold 

increases of both serum aspartate aminotransferase and lactate dehydrogenase activities in a 21-

year-old woman who ingested 12 g of INH (Bear et al., 1976).  These clinical observations are 

supported by a preclinical study showing that a high dose of INH causes the accumulation of 

reactive oxygen species and reactive nitrogen species in mouse liver (Shuhendler et al., 2014).  
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Therefore, monitoring of liver functions and prothrombin time is recommended in clinical 

practice for management of INH poisoning (Romero and Kuczler, 1998).   

 

Understanding the acute effects of INH on the liver will be helpful for management of INH-

induced liver injury during INH poisoning (Tai et al., 1996; Romero and Kuczler, 1998; 

Temmerman et al., 1999).  However, limited information is available in this regard (INCHEM, 

2016).  Metabolomics, a methodology for exploring metabolite profiles in biological matrices, 

has been considered a powerful tool for illustrating the biochemical basis of drug toxicity and 

disease (O'Connell and Watkins, 2010; Beyoglu and Idle, 2013).  In the current study, we used a 

metabolomic approach to investigate endobiotic homeostasis in the liver of mice receiving a high 

dose of INH.  We found that INH interacts with multiple biochemical pathways in the liver, 

including heme, fatty acids, oxidized nicotinamide adenine dinucleotide (NAD), vitamin B6, and 

cystathionine. 

 

Materials and methods 

Chemicals and reagents.  INH, hemin, cystathionine, NAD, pyridoxal (PL), pyridoxal phosphate 

(PLP), heptafluorobutyric acid (HFBA), and porcine brain NAD-glycohydrolase (NADase) were 

purchased from Sigma-Aldrich (St. Louis, MO).  Oleoyl-L-carnitine and linoleoyl-L-carnitine 

were purchased from INDOFINE Chemical Company (Hillsborough, NJ).  Deuterium-labeled 

INH (d4-INH) was purchased from Toronto Research Chemicals (Toronto, ON, Canada).  All 

solvents for metabolite analysis were of the highest grade commercially available. 
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Animals and treatments.  Mouse is a commonly used model for the studies on INH (Metushi et 

al., 2012).  In the current study, wild-type mice (FVB/NJ, male, 8-week-old) were treated orally 

with INH at 0, 50 or 200 mg/Kg.  These doses were chosen according to the dosage conversion 

factor between humans and mice (Reagan-Shaw et al., 2008).  Because the regular dose of INH 

is 5 mg/kg/day in humans (INCHEM, 2016), 50 mg/Kg INH in mice mimics the 

pharmacological dose in humans; and 200 mg/Kg INH in mice mimics the toxic dose in humans.  

We did not choose the doses over 200 mg/Kg, because the LD50 of INH (po) in mice is 176 

mg/Kg (INCHEM, 2016).  To explore the effect of INH on liver metabolome, the mice were 

sacrificed at 30 min after INH treatment.  Moribund was not observed at this time point Blood 

andliver samples were collected for metabolomic analysis.  Serum alanine transaminase (ALT) 

and aspartate transaminase (AST) were also analyzed.  We chose 30 min for sample collection, 

because most mice will die between 45 and 90 min after the treatment of 200 mg/Kg INH.  To 

determine the time-dependent effect of INH on vitamin B6 in the liver, the mice were sacrificed 

at 15 and 45 min after INH treatment.  All procedures involving mouse care and handling were 

in accordance with study protocols approved by the Institutional Animal Care and Use 

Committee.   

 

Sample preparation.  Liver tissues were homogenized in water (100 mg liver in 300 µl of 

water).  Subsequently, a 400 µl aliquot of ice-cold MeOH was added to 200 µl of the resulting 

mixture, followed by vortexing and centrifugation at 18,000 g for 20 min.  The supernatant was 

transferred to a new Eppendoff tube for second centrifugation (18,000 g for 10 min).  Each 

supernatant was transferred to an auto sampler vial, and 5.0 µl was injected into an ultra-
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performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry 

(UPLC-QTOFMS) for metabolite analysis. 

 

UPLC-QTOFMS analysis.  The same approach has been used in our previous studies on the 

metabolism of atazanavir and tipranavir (Li et al., 2010; Li et al., 2011a).  In brief, a 100 mm x 

2.1 mm (Acquity 1.7 µm) UPLC BEH C-18 column (Waters, Milford, MA) was used for 

metabolite separation.  The flow rate of the mobile phase was set as 0.3 ml/min.  The gradient 

ranged from 2% to 98% acetonitrile containing 0.1% formic acid in the first 8.5 min, 98% 

acetonitrile for 8.5 to 18 min, then equilibration at 2% acetonitrile for 2 min. QTOFMS (Waters, 

Milford, MA) was operated in a positive mode with electrospray ionization.  The source 

temperature and desolvation temperature were set at 120 °C and 350 °C, respectively.  Nitrogen 

was used as the cone gas  and desolvation gas.  Argon was applied as the collision gas.  

QTOFMS was calibrated with sodium formate and monitored by the intermittent injection of 

lock mass leucine enkephalin in real time.  The capillary voltage and cone voltage were set at 3.5 

kV and 35 V, respectively.  Screening and identification of major metabolites were performed by 

using MarkerLynx software (Waters, Milford, MA) based on accurate mass measurement (mass 

errors less than 10 ppm).  Tandem mass spectrometry fragmentation was conducted with 

collision energy ramp ranging from 10 to 40 V. 

 

Inhibitory effect of INH on NADase activity.  The inhibitory effect of INH (0 - 10 mM) on 

NADase activity was performed according to a previous report (Escande et al., 2013).  Briefly, 

NADase activity was measured using recombinant human CD38 and expressed as arbitrary 

fluorescent units per minute (AFU/min).  
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Formation of INH-NAD adduct in S9 fraction of mouse liver and NADase.  The metabolite 

VII was proposed as an INH-NAD adduct.  To verify the structure of INH-NAD adduct and 

determine the role of NADase in formation of this adduct, we incubated INH or d4-INH with 

NAD in S9 fraction of mouse liver and porcine NADase, respectively.  Briefly, the reactions 

were conducted in an incubation system containing liver S9 fractions or NADase, 2 mM INH or 

d4-INH, and 2 mM NAD at 37 °C for 2 h.  The reactions were terminated by adding two-fold 

volume of ice-cold MeOH, followed by vortexing and centrifugation at 10,000 g for 10 min.  

The supernatant was analyzed by UPLC-QTOFMS. 

 

Bioanalysis of pyridoxal (PL) and pyridoxal phosphate (PLP).  PL is one of the three natural 

forms of vitamin B6, and the active form of vitamin B6 is PLP.  PL and PLP were analyzed 

according to a published method with a slight modification (van der Ham et al., 2012).  In brief, 

an aliquot of 100 µl of liver homogenate was mixed with 20 µl of trifluoroacetic acid, followed 

by vortexing and centrifugation at 15,000 g for 10 min.  Two µl of the supernatant was injected 

into the UPLC-QTOFMS system for analysis of PL and PLP.  An Acquity HSS T3 column (100 

mm x 2.1 mm, 1.7 µm) was used for chromatographic separation.  A 4-min gradient at flow rate 

of 0.4 mL/min was used with mobile phase A (0.65 M acetic acid with 0.01% HFBA in water) 

and mobile phase B (0.65 M acetic acid with 0.01% HFBA in acetonitrile).  The QTOFMS was 

operated in positive mode.   

 

Synthesis of INH-PL adduct.  We expected the formation of an INH-PL adduct.  To verify its 

structure, we synthesized this adduct.  Briefly, 200 µl of PL (400 µM in H2O) and 200 µl of INH 
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(400 µM) were added to an Eppendorf tube.  The resulting mixture was placed on a shaker at 37 

°C for 30 min.  The final product was analyzed by UPLC-QTOFMS.  HRMS (ESI) Calcd. for 

C14H15N4O3 [M+H]+ 287.1144, found 287.1146. 

 

Metabolomic analysis.  An untargeted metabolomic approach was used in the current study.  

Briefly, mass chromatograms and spectra were acquired by MassLynx software in centroid 

format from m/z 50 to 1000.  Following deconvolution by MarkerLynx software, a multivariate 

data matrix containing information on sample identity, ion identity (retention time and m/z), and 

ion abundance was produced through deisotoping, filtering, peak recognition, and integration.  

We excluded INH and known INH metabolites (Li et al., 2011b) from the data matrix to focus on 

endobiotics in the liver.  Principal component analysis (PCA) and orthogonal projection to latent 

structures-discriminant analysis (OPLS-DA) were further conducted on Pareto-scaled data to 

explore INH-mediated changes in liver metabolome.  We next focused on the endogenous 

metabolites that were significantly altered after INH treatment.   

 

Statistics.  All quantified data are expressed as mean ± standard error of the mean (SEM).  

Statistical analysis was conducted using ANOVA.  A p value of < 0.05 was considered 

statistically significant. 

 

Results and discussion 

Metabolomics has revealed elevation of bile acids, carnitine and carnitine derivatives in the urine 

and bile of mice chronically treated with a pharmacological dose of INH (Cheng et al., 2013).  In 

addition, disturbance of heme synthesis pathway has been found in pregnane X receptor-
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humanized mice chronically co-treated with rifampicin and INH (Li et al., 2013).  However, 

limited information is available for the acute effects of INH on endobiotic homeostasis in the 

liver.  In the current study, an untargeted metabolomic approach was used to address this topic in 

mice.  The PCA analysis revealed two clusters corresponding to the control and 200 mg/Kg INH-

treated groups in a score plot (Figure 1A).  The corresponding S-plot displays the ion 

contribution to the group separation (Figure 1B).  The top ranking ions were identified as heme 

(I), oleoyl-L-carnitine and linoleoyl-L-carnitine (II and III), INH-fatty acid amides (IV and V), 

NAD (VI), INH-NAD adduct (VII), and cystathionine (VIII).  The serum metabolites were also 

profiled using the same method.  However, the biomarkers identified in the liver cannot be found 

in the serum of mice treated with INH (Supplemental Table 1 and Supplemental Figure 1).  In 

addition, treatment with INH had no significant effect on serum ALT and AST activities 

(Supplemental Figure 2). 

 

INH-mediated accumulation of heme (I) in the liver 

Metabolite I was eluted at 6.03 min (Figure 2A).  MS/MS of metabolite I revealed the major 

product ions at m/z 616, 557 and 498 (Figure 2B), which exactly matched to the fragments of 

heme.  The structure of metabolite I was further confirmed by comparing the retention time and 

MSMS to the authentic standard of heme.  The INH-mediated accumulation of heme in mouse 

liver is dose-dependent.  Compared to the control group, the levels of heme elevated 4 and 10 

folds in 50 and 200 mg/Kg groups, respectively (Figure 2C). 

 

Heme is a functional component of a variety of critical cellular proteins and is involved in 

numerous physiological processes such as oxygen transport, signal transduction, and cell 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on August 16, 2016 as DOI: 10.1124/dmd.116.070920

 at A
SPE

T
 Journals on A

pril 19, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD # 70920 

11 

 

differentiation and proliferation (Beri and Chandra, 1993; Ponka, 1999).  However, an excessive 

amount of free heme can cause membrane lipid peroxidation and the formation of reactive 

oxygen species, which eventually lead to the impairment of lipid bilayers and organelles, such as 

nuclei and mitochondria (Ryter and Tyrrell, 2000).  Therefore, a high level of free heme will 

result in oxidative stress and tissue damage (Wagener et al., 2001; Wagener et al., 2003).  We 

found that the levels of free heme increased in mouse liver shortly after INH treatment, 

suggesting that heme may contribute in part to liver damage during INH acute poisoning.   

 

Heme homeostasis is tightly controlled.  The biosynthetic pathway of heme includes eight 

enzymatic reactions taking place partly in the mitochondria and partly in the cytoplasm, whereas 

heme degradation is mediated by heme oxygenase 1 (HO-1) (Tenhunen et al., 1968; Tenhunen et 

al., 1969).  The possible mechanisms of INH-mediated heme accumulation include (1) induction 

of heme biosynthesis; and (2) inhibition of HO-1-mediated heme degradation.  Because the 

levels of heme in the liver increased shortly after INH treatment, it is more likely that INH 

inhibits heme degradation rather than the induction of heme biosynthesis.  Further studies are 

needed to determine the mechanism by which INH disturbs heme homeostasis during INH acute 

poisoning.   

 

INH-mediated accumulation of oleoyl-L-carnitine (II) and linoleoyl-L-carnitine (III) in the 

liver 

Metabolite II was eluted at 7.48 min (Figure 3A).  The MS/MS of II produced the major ions at 

m/z 426, 367, 144, and 85 (Figure 3B).  Metabolite III was eluted at 7.15 min (Figure 3A), with a 

molecule [M+H]+ at m/z = 424Da.  The major fragmental ions of III included m/z 365, 144, and 
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85 (Figure 3C).  Both metabolites II and III were identified as acylcarnitines because of their 

typical MS fragments at 85 and 144.  Their structures were further determined as oleoyl-L-

carnitine and linoleoyl-L-carnitine, respectively, by comparing the retention time and MSMS to 

the authentic standards.  The INH-mediated accumulation of oleoyl-L-carnitine and linoleoyl-L-

carnitine was dose-dependent (Figure 3D). 

 

Mitochondrial dysfunction is one of the major mechanisms of drug-induced hepatotoxicity 

(Labbe et al., 2008; Pessayre et al., 2010; Pessayre et al., 2012).  Long-chain fatty acid 

acylcarnitines are intermediates in fatty acid β-oxidation that occurs in mitochondria.  Therefore, 

accumulation of oleoyl-L-carnitine and linoleoyl-L-carnitine suggests mitochondrial dysfunction 

(Makowski et al., 2009; Sampey et al., 2012).  Studies have found that overdose of 

acetaminophen, a well-known hepatotoxin targeting mitochondria, leads to acylcarnitine 

accumulation in mice (Chen et al., 2009; McGill et al., 2014).  In the current study, we found that 

overdose of INH resulted in acylcarnitine accumulation in the liver, indicating that a high dose of 

INH causes mitochondrial dysfunction.  This finding is supported by the fact that hydrazine, an 

INH metabolite, suppresses mitochondria complex II (Lee et al., 2013; Boelsterli and Lee, 2014).   

 

Formation of INH-fatty acid amides (IV and V) 

Metabolites IV and V were eluted at 8.85 and 8.31 min, respectively (Figure 4A).  The molecular 

weight (MW) difference of metabolites IV and V is 2 Da, but both of them have the major 

fragments of INH at m/z 138 and 121 (Figure 4B and 4C), suggesting the conjugation with INH.  

We further proved that metabolites IV and V are amides formed through the interactions between 
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INH and fatty acids.  With the increase of INH dosage, the formation of INH-fatty acid amides 

IV and V increased significantly (Figure 4D).   

 

The possible mechanism for the formation of INH-fatty acid amides (IV and V) was proposed as 

follows: (1) fatty acyl-CoA synthetase catalyzes fatty acids to form fatty acyl-CoAs; and (2) INH 

attacks fatty acyl-CoAs to form amides (Figure 4E).  The formation of fatty-acyl-CoAs is an 

important step in fatty acid β-oxidation.  Therefore, the interaction between INH and fatty-acyl-

CoAs would reduce fatty acid β-oxidation.  Together with the INH-mediated accumulation of 

oleoyl-L-carnitine and linoleoyl-L-carnitine (Figure 3), our results suggest that overdose of INH 

suppresses fatty acid metabolism, which may explain in part the mechanism of INH-induced 

fatty liver in mice (Richards et al., 2004; Church et al., 2014).   

 

INH-mediated NAD (VI) accumulation in the liver 

Metabolite VI was eluted at 0.87 min and had a protonated molecule [M+H]+ at m/z = 664 Da.  

The MS/MS of metabolite VI produced the major ions at m/z 542, 524, 428, 348, 232, and 136, 

which exactly matched to the fragments of NAD (Figure 5A).  The structure of metabolite VI 

was further confirmed by comparing the retention time and MSMS to the authentic standard of 

NAD.  The INH-mediated NAD accumulation in mouse liver is dose-dependent (Figure 5B).   

 

NAD, a coenzyme in redox reactions, serves as an electron carrier in fatty acid β-oxidation, 

glycolysis, and the Krebs cycle (Pollak et al., 2007).  In addition to redox reactions, NAD 

participates in post-translational modifications of proteins, including NAD-dependent 

deacetylation and mono- and poly-ADP-ribosylation (Dolle et al., 2013).  NAD-dependent 
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deacetylation is a key mechanism to control the activities of many mitochondrial enzymes that 

are involved in the Krebs cycle, fatty acid metabolism, antioxidant response, oxidative 

phosphorylation, and amino acid catabolism (Dolle et al., 2013; Nikiforov et al., 2015).  

Therefore, INH-mediated elevation of NAD in the liver may disrupt hepatic energy metabolism. 

 

NAD is synthesized either in a de novo pathway from amino acids or in salvage pathways by 

recycling preformed components such as nicotinamide back to NAD (Nikiforov et al., 2015).  

However, the synthetic pathways may not be important in the INH-mediated NAD accumulation 

in the liver, because (1) the synthesis of NAD may require a certain time to build up a high level 

of NAD and (2) NAD accumulation occurs sharply after INH treatment.  Based on the role of 

NAD in redox reactions, protein deacetylation, and ADP-ribosylation (Pollak et al., 2007; Dolle 

et al., 2013), it is possible that overdose of INH inhibits the functions of the NAD-dependent 

enzymes.  In addition, NAD can be hydrolyzed to ADP-ribose and nicotinamide in mitochondria 

by NAD-glycohydrolase (NADase) (Nakazawa et al., 1968; Zhang et al., 1995).  We found that 

INH dose-dependently inhibits NADase activity (Figure 5C), suggesting that the INH-mediated 

accumulation of NAD is in part caused by INH-mediated NADase inhibition.  Further studies are 

needed to determine the detailed mechanism by which overdose of INH leads to NAD 

accumulation in the liver.   

 

Formation of INH-NAD adduct (VII) 

Metabolite VII had a protonated molecule [M+H]+ at m/z = 679 Da.  MS/MS of metabolite VII 

produced the primary ions at m/z 542, 524, 428, and 136 (Figure 6A), which are exactly the 

same as the fragments of NAD (Figure 5A).  However, the MW of metabolite VII is 15 Da larger 
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than NAD.  We proposed the metabolite VII as an INH and NAD adduct in which the 

nicotinamide moiety in NAD was replaced by INH, because the MW difference of INH and 

nicotinamide is 15 Da.  The structure of INH-NAD adduct was further confirmed by the studies 

using d4-INH (Figure 6B).  In addition, the structure of the INH-NAD adduct reported in the 

current study was different from that of the previously reported INH-NAD adduct generated by 

the mycobacterial catalase-peroxidase enzyme KatG or host INH activation (Zhang et al., 1992; 

Mahapatra et al., 2012). 

 

Formation of INH-NAD adduct is dose-dependent (Figure 6C).  In the control group, no INH-

NAD was detected.  However, a considerable abundance of INH-NAD was detected in the liver 

of mice treated with 50 mg/Kg of INH, and it came to be much more abundant in the group 

treated with 200 mg/Kg (Figure 6C).  We proposed that the formation of INH-NAD adduct is 

mediated by NADase.  In addition to the activity of hydrolysis, NADase catalyzes the base-

exchange reaction where it transfers the ADP-ribose moiety of NAD to pyridine derivatives such 

as nicotinamide and thionicotinamide (Nakazawa et al., 1968; Chini, 2009).  INH contains a 

pyridine ring and its structure is similar to nicotinamide.  Therefore, NADase may incorporate 

INH and ADP-ribose to form the INH-NAD adduct.  We recaptured the formation of INH-NAD 

adduct using the purified NADase when it was co-incubated with equimolar amount of INH and 

NAD (Figure 6D).  Further studies are needed to characterize the functions of INH-NAD adduct 

and its association with INH-induced liver damage. 

 

INH-mediated accumulation of cystathionine (VIII) 
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Metabolite VIII was eluted at 0.81 min (Figure 7A).  Metabolite VIII had a protonated molecule 

[M+H]+ at m/z = 223 Da, with major fragments at m/z 134 and 88, which exactly matched to 

cystathionine (Figure 7B).  The structure of cystathionine was further confirmed by comparing 

the retention time and MSMS to the authentic standard of cystathionine.  INH-mediated 

accumulation of cystathionine is dose-dependent (Figure 7C).   

 

Cystathionine is an important intermediate in the transsulfuration pathway (Stipanuk, 1986).  

Cystathionine beta synthase (CBS) and cystathionine gamma-lyase (CSE) are the enzymes for 

synthesizing and cleaving of cystathionine, respectively.  Both CBS and CSE require the active 

form of vitamin B6 (pyridoxal phosphate, PLP) as a cofactor (Binkley et al., 1952).  INH can 

cause vitamin B6 deficiency in part due to the formation of the INH and vitamin B6 adduct 

(Mandel, 1959).  In the current study, an INH-PL adduct was detected in the serum of mice 

treated with INH (Figure 7D).  In addition, the concentrations of PLP in the liver were 

dramatically decreased after INH treatment (Figure 7E).  Although PLP is needed for both 

cystathionine synthesis and degradation, PLP deficiency affects CSE activity more than it affects 

CBS activity (Binkley et al., 1952; Hope, 1964).  Therefore, we propose that accumulation of 

cystathionine in the liver after INH overdose is due to PLP deficiency (Figure 7F).   

 

In the current study, we used an untargeted metabolomic approach to explore the INH-mediated 

global changes of endobiotic metabolites in mouse liver.  We found that overdose of INH 

resulted in accumulation of oleoyl-L-carnitine and linoleoyl-L-carnitine in the liver, indicating 

mitochondrial dysfunction.  We also revealed the interactions between INH and fatty acyl-CoAs 

by identifying INH-fatty acid amides.  In addition, we found that overdose of INH led to the 
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accumulation of heme, NAD, and INH-NAD adduct in the liver.  Furthermore, we illustrated that 

overdose of INH depleted vitamin B6 in the liver and blocked vitamin B6-dependent 

cystathionine degradation.  All these hepatic biomarkers of INH presented in a dose-dependent 

manner, suggesting that a pharmacological dosage of INH can also interrupt the metabolism of 

endobiotics, especially for the slow metabolizers of N-acetyltransferase 2, in which INH 

metabolism is suppressed (Chen et al., 2006; Zabost et al., 2013).  In summary, our data suggest 

that INH can disturb multiple endogenous pathways in the liver (Figure 8), which are potentially 

associated with INH-induced liver toxicity.  
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Figure legends 

Figure 1.  Metabolomic analysis of mouse liver from the control and INH-treated groups. 

WT mice were treated with vehicle or 200 mg/Kg INH (p.o.).  Liver samples were collected 30 

min after treatment.  All samples were analyzed by UPLC-QTOFMS.  (A) Separation of control 

and INH-treated groups in a PCA score plot.  The t[1] and t[2] values represent the score of each 

sample in principal component 1 and 2, respectively.  (B) Loading S-plot generated by OPLS-

DA analysis.  The X-axis is a measure of the relative abundance of ions and the Y-axis is a 

measure of the correlation of each ion to the model.   

 

Figure 2. Accumulation of heme (I) in the liver of mice treated with INH.  A, the extracted 

chromatogram of heme. B, MS/MS of heme.  C, relative abundance of heme.  The data are 

expressed as mean ± SEM (n = 3). ***p < 0.001 vs control group. 

 

Figure 3. Accumulation of oleoyl-L-carnitine (II)  and linoleoyl-L-carnitine (III) in the liver 

of mice treated with INH.  A, extracted chromatograms of acylcarnitines II and III.  B, MS/MS 

of oleoyl-L-carnitine (II).  C, MS/MS of linoleoyl-L-carnitine (III).  D, relative abundance of 

acylcarnitines II and III in the liver. The data are expressed as mean ± SEM (n = 3). **p < 0.01, 

***p < 0.001 vs control group. 

 

Figure 4. Formation of INH-fatty acid amides (IV and V).  A, extracted chromatograms of 

amides IV and V.  B, MS/MS of amide IV.  C, MS/MS of amide V.  D, relative abundance of 

amides IV and V. The data are expressed as mean ± SEM (n = 3). **p < 0.01 vs control group.  

E, the scheme of the formation of INH-fatty acid amides.  N.D., not detected. 
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Figure 5. Accumulation of NAD (VI) in the liver of mice treated with INH.  A, MS/MS of 

NAD.  B, relative abundance of NAD in the liver. The data are expressed as mean ± SEM (n = 

3). ***p < 0.001 vs control group.  C, the inhibitory effect of INH on NADase activity. 

 

Figure 6. Formation of INH-NAD adduct (VII) in the liver of mice treated with INH.  A, 

MS/MS of INH-NAD adduct.  B, MS/MS of d4-INH-NAD adduct.  C, relative abundance of 

INH-NAD adduct in the liver.  D, the role of NADase in the formation of INH-NAD adduct.  

N.D., not detected.  The quantified data are expressed as mean ± SEM (n = 3).  *p < 0.001 vs 

control group. 

 

Figure 7.  Accumulation of cystathionine (VIII) in the liver of mice treated with INH.  A, 

the extracted chromatogram of cystathionine from the liver.  B, MS/MS of cystathionine.  C, 

relative abundance of cystathionine in the liver.  D, MS/MS of INH-PL adduct.  E, relative 

abundance of PLP in the liver.  All quantified data are expressed as mean ± SEM (n = 3).  **p < 

0.01, ***p < 0.001 vs control group.  F, the proposed mechanism by which INH disturbs 

cystathionine homeostasis.  CSE, cystathionine gamma-lyase; PLP, pyridoxal phosphate. 

 

Figure 8.  The scheme of disturbance of endogenous pathways in mouse liver by a high dose 

of INH.  FA, fatty acid. 
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