Application of static modeling in the prediction of in vivo drug-drug interactions between rivaroxaban and anti-arrhythmic agents based on in vitro inhibition studies

Eleanor Jing Yi Cheong, Janice Jia Ni Goh, Yanjun Hong, Gopalakrishnan Venkatesan, Yuanjie Liu, Gigi Ngar Chee Chiu, Pipin Kojodjojo and Eric Chun Yong Chan

Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543 (E.J.Y.C, J.J.N.G, Y.H, G.V, Y.L, G.N.C.C, E.C.Y.C); Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Cha Chi-ming Science Tower, Ho Sin Hang Campus, Hong Kong (Y.H); Department of Cardiology and Cardiac Electrophysiology, National University Heart Centre, 5 Lower Kent Ridge Road, Singapore 119074 (P.K); Singapore Institute for Clinical Sciences (SICS), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore 117609 (E.C.Y.C)
Running title: Interactions between rivaroxaban and anti-arrhythmic agents

Address correspondence to:

Associate Professor Eric Chun Yong Chan, Department of Pharmacy, Faculty of Science, National University of Singapore, Block S7, Level 2, 18 Science Drive 4, Singapore 117543, Singapore.

Email: phaccye@nus.edu.sg; Telephone: 65-6516 6137; Fax: +65-67791554

Number of Text Pages 16
Number of Tables 5
Number of Figures 6
Number of References 35
Number of Words in the Abstract 246
Number of Words in the Introduction 661
Number of Words in the Discussion 1500

ABBREVIATIONS

ACN Acetonitrile
AF Atrial Fibrillation
CYP2J2 Cytochrome P450 2J2
CYP3A4 Cytochrome P450 3A4
CYP3A5 Cytochrome P450 3A5
DDI Drug-drug interaction
FDA United States Food and Drug Administration
f_m Fraction of the total clearance to which the affected P450 enzyme contributes
F_G Fraction of the dose of the affected drug that passes through the intestine unchanged after p.o. administration
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\text{I}]\text{l}$, $[\text{I}]\text{g}$</td>
<td>Concentration of inactivator at the active site in the liver and the gut respectively</td>
</tr>
<tr>
<td>k_{deg}</td>
<td>First order rate constant of in vivo degradation of the CYP enzymes</td>
</tr>
<tr>
<td>K_i</td>
<td>Reversible inhibition constant</td>
</tr>
<tr>
<td>K_i</td>
<td>Inactivator concentration at half-maximum inactivation rate constant</td>
</tr>
<tr>
<td>k_{inact}</td>
<td>Maximum inactivation rate constant</td>
</tr>
<tr>
<td>K_m</td>
<td>Michaelis-Menten constant</td>
</tr>
<tr>
<td>k_{obs}</td>
<td>Observed rate of inactivation</td>
</tr>
<tr>
<td>LC/MS/MS</td>
<td>Liquid chromatography in tandem with mass spectrometry</td>
</tr>
<tr>
<td>MBI</td>
<td>Mechanism-based inactivation</td>
</tr>
<tr>
<td>MRM</td>
<td>Multiple Reaction Monitoring</td>
</tr>
<tr>
<td>NDBD</td>
<td>N-desbutyldronedarone</td>
</tr>
<tr>
<td>NDEA</td>
<td>N-desethylamiodarone</td>
</tr>
<tr>
<td>P-gp</td>
<td>P-glycoprotein</td>
</tr>
<tr>
<td>rCYP2J2</td>
<td>Recombinant Cytochrome P450 2J2</td>
</tr>
<tr>
<td>rCYP3A4</td>
<td>Recombinant Cytochrome P450 3A4</td>
</tr>
<tr>
<td>V_{max}</td>
<td>Maximum rate of reaction</td>
</tr>
</tbody>
</table>
ABSTRACT

Rivaroxaban, a direct Factor Xa inhibitor, is indicated for stroke prevention in non-valvular atrial fibrillation (AF). Studies have revealed that the clearance of rivaroxaban is largely attributed to CYP3A4, CYP2J2 metabolism and P-gp efflux pathways. Amiodarone and dronedarone are anti-arrhythmic agents employed in AF management. Amiodarone, dronedarone and their major metabolites, N-desethylamiodarone (NDEA) and N-desbutyldronedarone (NDBD) demonstrate inhibitory effects on CYP3A4 and CYP2J2 with FDA recommended probe substrates. Additionally, both amiodarone and dronedarone are known P-gp inhibitors. Hence, the concomitant administration of these anti-arrhythmic agents has the potential to augment the systemic exposure of rivaroxaban through simultaneous impairment of its clearance pathways. Currently, however, there is a lack of clinical data on the extent of these postulated DDIs. In this study, in vitro inhibition assays using rivaroxaban as the probe substrate demonstrated that both dronedarone and NDBD produced reversible inhibition as well as irreversible mechanism-based inactivation (MBI) of CYP3A4- and CYP2J2-mediated metabolism of rivaroxaban. However, amiodarone and NDEA were observed to cause reversible inhibition as well as MBI of CYP3A4 but not CYP2J2. Additionally, amiodarone, NDEA and dronedarone but not NDBD were determined to inhibit P-gp mediated rivaroxaban transport. The in vitro inhibition parameters were fitted into a mechanistic static model which predicted a 37% and 31% increase in rivaroxaban exposure due to the inhibition of hepatic and gut metabolism by amiodarone and dronedarone respectively. A separate model quantifying the inhibition of P-gp mediated efflux by amiodarone or dronedarone projected a 9% increase in rivaroxaban exposure.
Chemical compounds cited in this article

Amiodarone hydrochloride (PubChem CID: 441325); Dronedarone hydrochloride (PubChem CID: 219025); Dronedarone (PubChem CID: 208898); N-desethylamiodarone (PubChem CID: 104774); N-desbutyldronedarone (PubChem CID: 10255437); Rivaroxaban (PubChem CID: 9875401); Amprenavir (PubChem CID: 65016); Propranolol (PubChem CID: 4946)
INTRODUCTION

Atrial fibrillation (AF) is the most commonly sustained and clinically significant cardiac arrhythmia affecting approximately 33.5 million people worldwide in 2010 (Chugh et al., 2014). As the prevalence of AF increases with age, the global burden of the disease is projected to increase exponentially, creating a significant public health burden (Rahman et al., 2014). Therapeutic cornerstones of AF management include ventricular rate control, maintenance of sinus rhythm using antiarrhythmic therapy and prevention of stroke and systemic embolism using anticoagulants (January et al., 2014).

Rivaroxaban (Xarelto, Janssen Pharmaceuticals, Inc., Beerse Belgium), an inhibitor of Factor Xa of the coagulation cascade, was approved in 2011 as a novel non-Vitamin K oral anticoagulant. It is indicated for the reduction of risk of stroke and systemic embolism in patients with non-valvular AF (US FDA, 2011b). Studies have revealed that approximately two thirds of the administered rivaroxaban dose undergoes metabolic clearance in the liver, with contributions from cytochrome P450 (CYP) enzymes, namely CYP3A4, CYP2J2 and hydrolytic enzymes (Weinz et al., 2009). The remaining one third of the given dose is eliminated in the urine largely via P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP [ABCG2]) mediated secretion (Gnoth et al., 2011). A previous physiologically-based pharmacokinetic (PBPK) modeling study characterized a drug-drug-disease interaction, where the synergistic combination of renal impairment coupled with moderate CYP3A4 inhibition culminated in a clinically significant increase in rivaroxaban exposure (Grillo et al., 2012). Outcomes of this simulation eventually led to recommendations cautioning against the concomitant administration of moderate CYP3A4/P-gp inhibitors with rivaroxaban in the presence of any degree of renal impairment (US FDA, 2011b). This attests to the inherent susceptibility of rivaroxaban to complex drug-drug interactions (DDIs) mediated through simultaneous impairment of its multiple clearance pathways. Given its steep exposure-major bleeding relationship (US FDA, 2011a), it is thus imperative to identify clinical relevant DDI scenarios that could augment rivaroxaban exposure.
A subgroup analysis of the ROCKET AF trial studying the efficacy and safety of rivaroxaban highlighted the potential combination of antiarrhythmic drug therapy and anticoagulation as mainstays in AF management and concluded that the concomitant use of amiodarone and rivaroxaban warrants further investigation (Steinberg et al., 2014). Dronedarone (Multaq, Sanofi Aventis, Bridgewater, NJ) was approved in 2009 as a structural analogue of amiodarone (US FDA, 2009a). In a bid to minimize the extracardiac adverse effects associated with amiodarone, iodine substituents were eliminated to avoid amiodarone-linked thyroid toxicities and a methane-sulfonamide group was added to reduce tissue accumulation (Fig. 1A and 1B) (US FDA, 2009).

Both amiodarone (Fig. 1A) and dronedarone (Fig. 1B) undergo extensive metabolism by CYP3A4/3A5 to form pharmacologically active metabolites N-desethylamiodarone (NDEA) (Fig. 1C) and N-desbutyldronedarone (NDBD) (Fig. 1D) respectively (Fabre et al., 1993; Klieber et al., 2014). Additionally, both drugs are substrates of CYP2J2 (Lee et al., 2010; Karkhanis et al., 2016). The common structural features in these antiarrhythmic agents and their metabolites are the alkyamine and furan that are in turn associated with mechanism-based inactivation (MBI) of CYP450 (Orr et al., 2012). Indeed, corroborating previous findings, our laboratory established the reversible and irreversible inhibition of CYP3A4- and CYP2J2-mediated metabolism of US FDA recommended probe substrates by amiodarone and NDEA (Ohyama et al., 2001; McDonald et al., 2015; Karkhanis et al., 2016) as well as dronedarone and NDBD (Hong et al., 2015; Karkhanis et al., 2016). Independently, amiodarone and dronedarone have been reported as P-gp inhibitors (US FDA, 2009b, 2012).

Taken together, we hypothesized that amiodarone, dronedarone, NDEA and NDBD could increase systemic exposure of rivaroxaban via their inhibitory effects on CYP3A4, CYP2J2 and P-gp. To date, there remains a paucity of clinical data on the DDIs between rivaroxaban and these antiarrhythmic agents. This study aimed to quantitatively predict the in vivo DDI risk between rivaroxaban and amiodarone or dronedarone via mechanistic static modeling. In order to characterize the multi-faceted DDIs and generate the inhibitory parameters accurately, rivaroxaban was utilized as the probe.
substrate in place of the respective US FDA recommended probe substrates of CYP3A4, CYP2J2 and P-gp.
MATERIALS AND METHODS

In this study, *in vitro* inhibition data encompassing reversible inhibition, MBI and inhibition of P-gp mediated efflux were fitted into mechanistic static models that provided the framework for quantitative predictions of either metabolic or transporter based DDIs between rivaroxaban and the antiarrhythmic drugs.

Chemicals. High performance liquid chromatography-grade acetonitrile (ACN) was purchased from Tedia Company Inc. (Fairfield, OH). Amiodarone hydrochloride, dronedarone hydrochloride, NDBD, NDEA, rivaroxaban and verapamil hydrochloride were acquired from Sigma-Aldrich (St. Louis, MO). Amprenavir was purchased from Toronto Research Chemicals Inc. (Toronto, ON, Canada). Human recombinant cytochrome P450 supersomes (rCYP) and NADPH regenerating system consisting of NADPH A (NADP⁺ and glucose-6-phosphate) and B (glucose-6-phosphate dehydrogenase) were obtained from BD Gentest (Woburn, MA). Water was obtained using a milli-Q water purification system (Millipore, Billerica, MA). For cell culture, Dulbecco’s modified eagle’s medium (DMEM) with phenol red, Dulbecco’s phosphate buffer solution (DBPS), foetal bovine serum (FBS) and 10,000 IU antibiotic solution (penicillin/streptomycin) were obtained from Gibco Life Technologies (Waltham, MA, USA). Lucifer yellow CH dilithium salt was from Invitrogen Corporation (Carlsbad, CA, USA). L-glutamine was from Hyclone Laboratories (Logan, UT, USA). Sodium bicarbonate powder was from Sigma Aldrich (St. Louis, MO, USA). All other reagents were of analytical grade.

Reversible Inhibition of CYP3A4 and CYP2J2 by amiodarone, dronedarone and their metabolites. Amiodarone, dronedarone and their metabolites (i.e. NDEA and NDBD) were tested as reversible inhibitors using rivaroxaban as the probe substrate. Experiments were performed in 96-well plates and all samples were carried out in triplicates. Rivaroxaban (2.5, 5, 15, 30 and 50 µM) was pre-incubated at 37°C for 5 min with 20 pmol/mL recombinant CYP enzymes, NADPH B and 100 mM potassium phosphate buffer (pH 7.4) across 7 concentration levels of the inhibitors (amiodarone: 0-5 µM; dronedarone, NDEA and NDBD: 0-10 µM). The reactions were initiated by the addition of 5 µL NADPH A, yielding a final incubation mixture of 100 µL with 1% ACN (v/v). Incubation was carried...
out at 37°C for either 2 h with CYP3A4 or 30 min with CYP2J2 before an 80 µL aliquot was removed and quenched with an equal volume of ice-cold ACN containing 0.005 µM verapamil (internal standard). The quenched samples were subjected to centrifugation at 2755 g, 4°C for 30 min. Subsequently, the supernatants were removed for the determination of morpholinone hydroxylated metabolite (main metabolite) of rivaroxaban by LC/MS/MS analysis (Supplemental Methods and Supplemental Table 1). The data were first fitted to the Michaelis-Menten model. Subsequently, Lineweaver Burk plots were applied to predict the mode of reversible inhibition. The apparent equilibrium dissociation constant (K_i) for the enzyme-inhibitor complex was determined by non-linear least squares regression based on the best model of reversible inhibition.

Time- and concentration-dependent inactivation of CYP3A4 and CYP2J2 by amiodarone, dronedarone and their metabolites. Rivaroxaban was used as the probe substrate in this experiment. Incubations (n=3) were conducted in 96-well plates. Primary incubation mixtures comprising various concentration levels of amiodarone (0-5 µM) or NDEA (0-1 µM) were pre-incubated at 37°C for 5 min with recombinant CYP enzymes (20 pmol/mL) and NADPH B in potassium phosphate buffer (100 mM, pH 7.4). To initiate the enzymatic reaction, 5 µL of NADPH A was added to the primary incubation. The final primary incubation mixture volume was 100 µL and contained <1% v/v organic solvent. At different pre-incubation time points (0, 3, 8, 15, 22, 30, 45 min) after the addition of NADPH A, 5 µL aliquots of the primary incubation was transferred to 95 µL of the secondary incubation containing 50 µM rivaroxaban, the NADPH regenerating system and 100 mM potassium phosphate buffer (pH 7.4) to yield a 20-fold dilution. The secondary incubation mixtures were incubated at 37°C for 2 h with CYP3A4 or 30 min with CYP2J2 before 80 µL aliquots were removed and quenched with an equal volume of ice-cold ACN containing 0.005 µM verapamil (internal standard). The same morpholinone hydroxylated metabolite was quantified using LC/MS/MS (Supplemental Methods and Supplemental Table 1). Inactivation of CYP3A4 (40 pmol/mL) and CYP2J2 (20 pmol/mL) by dronedarone (0-2.5 µM) and NDBD (0-5 µM) was investigated using the same two step incubation protocol except with a 10-fold dilution into the secondary incubation.
Calculation of Inactivation Kinetic Parameters (K_I and k_{inact}). The mean of triplicate peak area ratios was normalized to 0 min with respect to pre-incubation time. The percentage probe substrate activity remaining was computed and the natural logarithmic activity plotted against inactivation pre-incubation time for each inactivator concentration. The data were fitted to linear regression and k_{obs} values (apparent inactivation rate constants) were calculated as the negative slopes of the lines. Subsequently, a plot of k_{obs} values against inactivator concentration $[I]$ allowed the fitting of inactivation kinetic parameters (K_I and k_{inact}) to non-linear least squares regression based on Equation 1 in GraphPad PRISM® software version 6.01 (San Diego, CA, USA).

$$k_{\text{obs}} = \frac{k_{\text{inact}} \times [I]}{K_I + [I]}$$

In Equation 1, k_{inact} represents the maximum inactivation rate constant at infinite inactivator concentration; K_I is the concentration of inactivator at the half-maximum rate of inactivation and $[I]$ is the in vitro inactivator concentration.

Inhibition of P-gp efflux of rivaroxaban by amiodarone, dronedarone and their metabolites.

Madin-Darby canine kidney sub-clone I cells transfected with multidrug resistance protein 1 (MDCK-MDR1) were maintained in DMEM culture media supplemented with 10% FBS, L-glutamine (862 mg/L) and 1% penicillin/streptomycin. For transport studies, cells were first seeded at a density of 250,000 cells/well and culture media was refreshed after 24 h. At approximately 48 h post-seeding, culture media was first removed and each well and insert were rinsed gently with PBS to ensure no residual metabolic waste. Test inhibitors were dissolved in methanol whereas rivaroxaban was reconstituted in ACN and dimethyl sulfoxide (DMSO) at lower (2 mM) and higher concentration (20 mM) levels respectively. Dilutions for all compounds were carried out using ACN. Triplicate sets of wells were used to assess the apparent permeability of rivaroxaban from the apical (A) to basolateral (B) chambers [$P_{\text{app}} (A \rightarrow B)$] and B to A [$P_{\text{app}} (B \rightarrow A)$]. To initiate transport, the donor solution was first added followed by the receiver solution. All experiments were carried out at room temperature ($24 \pm 1^\circ$C). Amprenavir (10 µM) and propranolol (25 µM) were used as positive
controls (substrate and inhibitor respectively). $P_{app} (A\rightarrow B)$ of lucifer yellow (100 µM) was utilized as a marker of monolayer integrity. The fluorescence of lucifer yellow of each apical and basolateral solution was measured at an excitation wavelength of 430 nm and emission wavelength of 540 nm using a Tecan Infinite® F500 plate reader (Männedorf, Switzerland). Acceptance criterion for a confluent monolayer was defined as lucifer yellow permeability of less than 80 nm/s.

To ensure P-gp assay sensitivity, experiments were first performed to investigate the potential for both concentration and time-dependent saturation of the transport of rivaroxaban via P-gp (Supplemental Methods). The optimal incubation time was eventually determined to be 90 min and a rivaroxaban concentration of 10 µM was also selected (Supplemental Fig. 1 and 2). Subsequently, 25 and 12.5 µM of each inhibitor (i.e. amiodarone, dronedarone, NDEA and NDBD) were first subjected to a preliminary study to estimate their IC$_{50}$ values. The inhibitor concentrations were subsequently optimized to encompass the IC$_{50}$ and ensure inhibition assay sensitivity. The receiver solution was collected and stored at -20°C for further sample processing prior to LC/MS/MS analysis (Supplemental Methods). In order to determine the mode of P-gp inhibition, 3 inhibitor concentration levels in proximity of the IC$_{50}$ value were assayed against 2 concentration levels of rivaroxaban (5 and 20 µM). A Dixon plot was generated to predict the mode of P-gp inhibition as well as determine the K_i values.

Estimating the extent of metabolic DDI using a mechanistic static model. The kinetic constants accounting for reversible inhibition (i.e. K_i) and time-dependent inactivation (i.e k_{inact}, K_i) of the drug metabolizing enzymes were incorporated into a mechanistic static model developed previously by Fahmi et al (Fahmi et al., 2008) and refined by Isoherranen et al (Isoherranen et al., 2012) to account for multi P450 inhibition. The proposed model accounts for the contributions of enzyme inhibition both in the liver and within the gut wall in predicting the extent of DDI. The area under the curve ratio (AUCR) in the presence of a pharmacokinetic DDI is described by Equation 2.

\[
AUCR = \frac{1}{\sum_i [f_{m,P450i} \times (A \times B)] + (1 - \sum_i f_{m,P450i}) \times X \times Y \times (1 - F_g) + F_g}
\]

(2)
The terms are defined as follows:

A is the term for time-dependent inactivation observed in the liver for each of the P450 enzymes inactivated,

\[A = \frac{k_{deg.H}}{k_{deg.H} + \frac{[I]_H}{K_I}} \]

B is the term for reversible inhibition in the liver for each of the P450 enzymes inactivated,

\[B = \frac{1}{1 + \frac{[I]_H}{K_I}} \]

X is the term for time-dependent inactivation of CYP3A4 observed in the intestine,

\[X = \frac{k_{deg.G}}{k_{deg.G} + \frac{[I]_G}{K_I}} \]

Y is the term for reversible inhibition of CYP3A4 in the intestine,

\[Y = \frac{1}{1 + \frac{[I]_G}{K_I}} \]

where \([I]_H\) and \([I]_G\) represent in vivo concentrations of the inhibitor available to the enzyme in the liver and intestine respectively (Table 1). The degradation rates for CYP3A4 in the liver \((k_{deg.H})\) and intestine \((k_{deg.G})\) were 0.00032 and 0.00048 min\(^{-1}\) based on \(t_{1/2}\) of 36 h and 24 h (Fahmi et al., 2008). For CYP2J2, there is insufficient clinical pharmacokinetic data to perform similar calculations. As a result, the average of the calculated estimates for the various hepatic CYP enzymes \((0.00026 \text{ min}^{-1})\) was used (Yang et al., 2008). The fraction of rivaroxaban metabolized by CYP3A4 \((f_{m,CYP3A4})\) and CYP2J2 \((f_{m,CYP2J2})\) has been reported to be 0.18 and 0.14 respectively (Mueck et al., 2014) whereas the fraction of rivaroxaban escaping intestinal extraction \((F_G)\) was calculated to be 0.89 (see Supplemental Methods).

Estimating the extent of transporter mediated DDI using a mechanistic static model. The kinetic constant describing the inhibition of P-gp mediated efflux of rivaroxaban was fitted into another mechanistic static model developed to examine the effect of inhibition of renal secretion transporters.
on plasma exposure of the victim drug (Feng et al., 2013). The AUC ratio of the victim drug in the presence and absence of the inhibitor is summarized in Equation 3.

\[
AUCR = \frac{\frac{\text{CL}_{\text{sec.c}}}{\text{CL}_x}}{1 + \frac{\text{CL}_{\text{sec.c}}}{\text{CL}_x} \cdot \frac{1}{1 + \frac{[I]}{K_I}}} = \frac{1}{1 - \frac{\text{CL}_{\text{sec.c}}}{\text{CL}} \cdot \frac{[I]}{K_I}}
\]

where \([I] \) represents the maximum plasma concentration of the inhibitor (Table 1). The net secretory clearance of rivaroxaban (CL\text{sec.c}) (55.6 mL/min) was approximated to be five sixth of total plasma renal clearance (66.7 mL/min) (Mueck et al., 2014). The total plasma clearance (CL) of rivaroxaban has been reported to be 166.7 mL/min and is a composite of the hepatic and renal clearances (Mueck et al., 2014).
RESULTS

Reversible Inhibition of CYP3A4 and CYP2J2 by amiodarone, dronedarone and their metabolites. The reversible inhibition of CYP3A4 and CYP2J2 by amiodarone, dronedarone and their metabolites was investigated using the peak area of rivaroxaban metabolite as a proxy for the rate of product formation. Rivaroxaban was evaluated across 5 concentration levels spanning its K_m in the presence of varying concentrations of amiodarone, dronedarone, NDEA and NDBD. In a preliminary study of reversible inhibition of CYP2J2 by amiodarone and NDEA, high concentrations of both amiodarone and NDEA were easily overcome by a small increase in rivaroxaban concentration, thus suggesting that amiodarone and NDEA did not inhibit CYP2J2 with rivaroxaban as the probe substrate (Supplemental Fig. 3A). However, based on the inhibition kinetics plots (Fig. 2A-B) and their respective Lineweaver Burk plots (Fig. 2C-D), dronedarone and NDBD were established to be mixed competitive inhibitors of CYP2J2 when rivaroxaban was used as the probe substrate. On the other hand, amiodarone and NDEA exhibited mixed competitive inhibition of CYP3A4 (Fig. 3A-B and 3E-F) whereas dronedarone and NDBD demonstrated competitive inhibition (Fig. 3C-D and 3G-H). The calculated inhibition constants K_i of the relevant inhibitors against the respective enzymes are presented in Table 2.

Time- and concentration-dependent inactivation of CYP3A4 and CYP2J2 by amiodarone, dronedarone and their metabolites. To investigate the MBI of CYP3A4 and CYP2J2 by amiodarone, dronedarone and their metabolites, rivaroxaban was used as the probe substrate and the rate of hydroxylation at the morpholinone moiety of rivaroxaban was monitored and used as a surrogate for enzymatic activity. In the presence of NADPH, a time-dependent decrease in CYP2J2 enzymatic activity was not observed when pre-incubated with amiodarone (5 µM and 50 µM) and NDEA (Supplemental Fig. 3B and 3C). However, time-dependent inactivation of CYP2J2 was demonstrated in the presence of dronedarone and NDBD. Pre-incubation of CYP2J2 with increasing concentration levels of either dronedarone or NDBD resulted in concentration-dependent increased
rate of inactivation of enzymatic activity. The observed first order rates of inactivation (k_{obs}) calculated from various concentrations of dronedarone (Fig. 4A) and NDBD (Fig. 4B) followed saturation kinetics that approached a maximum rate of inactivation (Fig. 4C-D). Likewise, as presented in Fig. 5A-D, time- and concentration-dependent inactivation of CYP3A4 were established for both amiodarone, dronedarone and their metabolites. Kinetic plots (k_{obs} versus inactivator concentration) also demonstrated saturation kinetics (Fig. 5E-H). Calculated inactivation kinetic parameters, K_I and k_{inact}, are summarized in Table 3. The efficiency of enzyme inactivation (k_{inact}/K_I ratio) is also reported.

Cell Monolayer Integrity and Compound Recovery. A-to-B flux determinations of lucifer yellow were used to confirm monolayer integrity when co-incubated with the highest concentration levels of the test substrate and inhibitors. This data confirmed that the monolayer was intact under these extreme conditions and validated its suitability for subsequent permeability studies. Using LLE, high recovery of rivaroxaban ~ 100% and accurate linear calibration (+/- 20% accuracy and r^2 0.99) were achieved reproducibly from 0.01-10 µM. For rivaroxaban concentrations above 10 µM, saturation of the detector was observed and the samples were diluted using DMEM before sample processing in order to ensure its accurate quantitation. Percentage recovery of rivaroxaban from the apical and basolateral chambers at the end of the assay (mass balance) was greater than 80%, indicating that no significant amount of rivaroxaban was lost during sample transfer and processing nor in MDCK-MDR1, hence demonstrating the reliability of measured P_app values.

P-gp inhibitory IC$_{50}$ and K_I of test inhibitors. The concentration-dependent inhibitory effect of amiodarone, dronedarone and their metabolites on transport of rivaroxaban across MDR1-MDCKII monolayers was tested. IC$_{50}$ is the inhibitor concentration needed to decrease the efflux ratio by half. Amiodarone (Fig. 6A) and NDEA (Fig. 6B) yielded similar IC$_{50}$ values of 10.3 µM and 9.20 µM respectively. Based on an IC$_{50}$ of 1.83 µM (Fig. 6C), dronedarone was determined to be the most potent P-gp inhibitor while NDBD demonstrated little P-gp inhibition activity as seen from its high IC$_{50}$ value of 76.3 µM (Fig. 6D). Subsequently, the respective inhibitory concentrations that produced
a linear decrease in efflux ratio were chosen for the Dixon plots (data not shown) where we confirmed amiodarone’s noncompetitive allosteric inhibition of Pgp efflux of rivaroxaban (5 and 20 µM) with K_i at 8.94 µM while dronedarone demonstrated competitive inhibition with K_i at 0.68 µM. Assuming the same mode of non-competitive inhibition of P-gp, the K_i value of NDEA was determined to be 5.36 µM. The K_i value of NDBD was not further elucidated as its high IC$_{50}$ value was predicted not to produce meaningful inhibitory potential.

Static modeling of metabolic and transport based DDIs. *In vitro* inactivation (k_{inact} and K_i) and inhibition (K_i) parameters were subsequently incorporated into a mechanistic static model (Equation 2) that permits comprehensive evaluation of the potential impact of MBI and reversible inhibition of CYP3A4 and CYP2J2 on the systemic exposure of rivaroxaban. In the assessment of metabolic DDI potential using AUC fold change, inhibition of hepatic metabolism of rivaroxaban by amiodarone, NDEA, dronedarone and NDBD was predicted to produce AUC fold changes of 1.22, 1.22, 1.17 and 1.26 respectively (Table 4). When the combined effects of altered hepatic and intestinal metabolism were considered, there was an increase in the AUC fold change precipitated by amiodarone and dronedarone to 1.37 and 1.31 (Table 4). Transporter mediated DDI was quantitatively determined by fitting *in vitro* parameters describing inhibition of P-gp mediated efflux of rivaroxaban into Equation 3. As summarized in Table 4, the eventual AUC fold change was 1.09 for both dronedarone and amiodarone whereas NDEA produced a slightly higher AUC fold change of 1.13.
DISCUSSION

The application of *in vitro* methodologies to evaluate the inhibitory potential of a drug entity and assess the likelihood of *in vivo* drug interactions is a critical aspect of the drug development and regulatory review paradigm (Zhang et al., 2009). In this study, we quantified the *in vitro* inhibition parameters to characterize the DDI between rivaroxaban and the antiarrhythmic agents.

Rivaroxaban was not tested as a substrate in previous in house studies investigating the CYP3A4 and CYP2J2 inhibitory potencies of amiodarone, dronedarone and their metabolites (Hong et al., 2015; Karkhanis et al., 2016). In this study, we observed a significantly slower rate of rivaroxaban clearance by CYP3A4 as compared to CYP2J2 during initial assay optimization (data not published). Our optimization culminated in two incubation time periods of 2 h and 30 min for the sensitive detection of inhibitory effects against CYP3A4 and CYP2J2 respectively.

We report for the first time the competitive inhibition as well as MBI of CYP3A4 and CYP2J2 by dronedarone and NDBD with rivaroxaban as the probe substrate. On the other hand, amiodarone and NDEA demonstrated mixed competitive inhibition of CYP3A4 but not CYP2J2. Similarly, MBI was established for amiodarone and NDEA with respect to CYP3A4 but not CYP2J2. Based on our reported K_i values (Table 2), both amiodarone and NDEA exhibited similar potencies for mixed competitive inhibition against CYP3A4 whereas dronedarone is a relatively more potent inhibitor of both CYP3A4 and CYP2J2 as compared to NDBD. For MBI, our results confirmed that the inactivation efficiency of NDEA was approximately threefold higher than that of amiodarone against CYP3A4 (Table 3). Between dronedarone and NDBD, dronedarone exhibited a stronger inactivation efficiency against CYP3A4 compared to NDBD while both dronedarone and NDBD demonstrated comparable CYP2J2 inactivation efficiency (Table 3).
Using two concentrations of rivaroxaban as the test substrate, our monolayer efflux studies also illustrated the non-competitive allosteric inhibition of P-gp mediated rivaroxaban efflux by amiodarone. This finding corroborated previous in silico studies which also predicted amiodarone to inhibit P-gp by noncompetitive allosteric inhibition (Seelig and Landwojtowicz, 2000). Based on the structural similarities of NDEA to amiodarone, NDEA was assumed to follow a similar mode of P-gp inhibition. Intriguingly, although dronedarone was determined to be a competitive inhibitor of P-gp efflux, NDBD demonstrated a minimal inhibitory effect on P-gp (IC$_{50}$ = 76.3 µM). This observation deviates from previous postulation that dronedarone and NDBD may have a potential additive to synergistic effect on P-gp inhibition as is the case with amiodarone and NDEA (US FDA, 2009b).

The systemic exposures of NDEA and NDBD are comparable to that of their parent compounds and regulatory guidance proposes that metabolites present at ≥ 25% of AUC of the parent drug warrant further consideration with regards to their potential in precipitating in vivo DDIs (US FDA, 2012). Taken together, our results indeed underscore the potential contributions of NDEA and NDBA as inhibitory metabolites. NDEA (k_{inac}/K_i: 387 min$^{-1}$/mM$^{-1}$) being a more potent time-dependent inactivator of CYP3A4 compared to amiodarone (k_{inac}/K_i: 130 min$^{-1}$/mM$^{-1}$) was consistent with previous in vitro studies using midazolam as a probe substrate (McDonald et al., 2015). Likewise, NDEA (K_i: 5.36 µM) being more potent than amiodarone (K_i: 8.94 µM) in the inhibition of P-gp mediated rivaroxaban transport was also well aligned with previous transport assays using digoxin as a probe substrate (Katoh et al., 2001). In summary, it is evident that a holistic prediction of in vivo clinical DDI would require consideration of the combined inhibitory effects of both the parent compound and its metabolite.

Comparison of inactivation parameters obtained in our study with previous in house data generated using US FDA validated probe substrates established a probe substrate differential response (Supplemental Table 3). In the case of CYP3A4, the inactivation efficiency (k_{inac}/K_i) of dronedarone and NDBD was greater when rivaroxaban was used as the probe substrate (i.e. 185 and 53.7 min$^{-1}$/mM$^{-1}$) as compared to testosterone (i.e. 44.8 and 15.9 min$^{-1}$/mM$^{-1}$). This phenomenon of probe
substrate-dependent inhibition profiles has been emphasized mainly for CYP3A4, which possesses multiple probe substrate binding regions within its active site (Kenworthy et al., 1999). Consequently, the interactions observed with one CYP3A4 probe may not accurately reflect those observed with another probe substrate (Galetin et al., 2005; Foti et al., 2010). Although CYP2J2 metabolism is generally restricted to a single active site, our findings suggested differential binding and metabolism among different substrates. Previous studies utilizing US FDA recommended astemizole demonstrated both reversible and irreversible inhibition of CYP2J2 metabolism by amiodarone (Lee et al., 2012). However, our investigation revealed that amiodarone did not inhibit CYP2J2 reversibly and irreversibly with rivaroxaban as the probe substrate (Supplemental Figures 3A-B), suggesting the possibility of independent access of the active site of CYP2J2 by amiodarone and rivaroxaban (Shou et al., 1994).

Taken together, our study (1) reiterates that the variability of in vitro inhibitory potencies against CYP3A4 and CYP2J2 is highly dependent on the choice of probe substrates and (2) confirms the importance of using specific victim drug as the probe substrate in enzyme and transporter interaction studies.

In our study, the static prediction of DDI between amiodarone, dronedarone and rivaroxaban yielded an AUC fold change of 1.22 and 1.17 respectively when inhibition of hepatic metabolism was considered (Table 4). Based on US FDA’s guidelines (Table 5) (US FDA, 2012), this would imply that no significant inhibition was present. However, upon inclusion of gut metabolism, amiodarone and dronedarone were predicted to precipitate an AUC fold change in rivaroxaban exposure by 1.37 and 1.31 respectively. This attests to the significance of intestinal wall metabolism (Galetin et al., 2007) which when ignored can under-estimate the extent of DDIs involving CYP3A4. Additionally, our results underscore the potential contribution of NDEA and NDBD to the eventual DDI magnitude, where AUC fold changes of 1.22 and 1.26 were observed respectively. Furthermore, the inhibition of P-gp mediated rivaroxaban efflux by amiodarone, NDEA and dronedarone was also predicted to independently produce AUC ratio increases of 1.09, 1.13 and 1.09 respectively. However, the
simultaneous influences of both parent drug and metabolite as well as the cumulative impact of enzyme-transporter interplay cannot be incorporated in the current static modeling. Moreover, there is also no consensus on an appropriate surrogate concentration of the inactivator/inhibitor \([I]_{\text{in vivo}}\) available to the enzyme. Typically, measures of \([I]_{\text{in vivo}}\) are selected based on the estimates that provide the best correlation between predicted and observed DDIs reported in literature (Fahmi et al., 2008). Yet, in our case, our model cannot be cross-validated since clinical interaction data between rivaroxaban and amiodarone or dronedarone is not available. Nevertheless, it has been shown that model predictability was optimal when free portal steady state \(C_{\text{max}}\) was used for the reversible inhibition portion of the expression (term B) and free systemic steady state \(C_{\text{max}}\) was used for the time-dependent inactivation portion (term A) (Fahmi et al., 2009). Hence, these validated estimates of \([I]_{\text{in vivo}}\) were adopted in our study to enhance DDI predictability.

Given that the \textit{in vitro} interactions might culminate in a more significant DDI than that estimated using mechanistic static modeling, the use of PBPK models present several theoretical advantages. First, PBPK modeling utilizes a dynamic approach that allows consideration of changes in concentrations of enzyme, substrate and inactivator/inhibitor with time instead of relying on static point estimates. Second, PBPK modeling allows the evaluation of both intrinsic (e.g., organ dysfunction, age, genetics) and extrinsic (e.g., drug-drug interactions) factors, alone or in combinations, on drug exposure. Third, DDIs across multiple pathways and the variability of these DDIs in different populations can be examined.

Another factor that could potentially affect the \textit{in vitro} to \textit{in vivo} correlation is the presence of non-specific protein binding. The \(K_i, K_I\) and \(k_{\text{inact}}\) values were computed without accounting for protein binding in the recombinant system. Yet, Ishigam et al. has reported how the conversion of inhibition constants to their unbound values could eventually lead to more accurate predictions of the AUC-fold change upon co-administration of drugs (Ishigam et al., 2001). Furthermore, considering the high protein binding of amiodarone, dronedarone and their metabolites, the derived \textit{in vitro} inhibition and inactivation parameters might be relatively higher when unbound concentrations are considered.
Hence, to increase confidence in the DDI prediction, the fraction unbound in each incubation should be determined either computationally (Austin et al., 2002) or through equilibrium dialysis experiments (Banker et al., 2003).

In conclusion, amiodarone, dronedarone, NDEA and NDBD cause reversible inhibition and irreversible MBI of CYP3A4 with rivaroxaban as the probe substrate. Amiodarone and NDEA, unlike dronedarone and NDBD, do not inhibit CYP2J2. Amiodarone, dronedarone and NDEA but not NDBD, inhibit P-gp mediated efflux of rivaroxaban. Static modeling predicted a weak DDI risk between rivaroxaban and amiodarone or dronedarone. Fundamental limitations of the static model implied that molecular interactions between rivaroxaban and the antiarrhythmic agents and their metabolites via CYP3A4, CYP2J2 and P-gp were not considered in entirety. Future work would involve the assimilation of these in vitro inhibition parameters into a dynamic PBPK model, from which a more accurate quantitation of DDI magnitude can be derived.
AUTHORSHIP CONTRIBUTIONS

Participated in research design: Cheong, Goh, Hong, Kojodjojo and Chan

Conducted experiments: Cheong, Goh, Hong, Venkatesan and Liu

Contributed new reagents or analytic tools: Chiu

Performed data analysis: Cheong, Goh, Hong and Chan

Wrote or contributed to the writing of the manuscript: Cheong, Goh, Hong and Chan
References

Biopharm Drug Dispos **33**:99–110.

atrial fibrillation receiving oral anticoagulation: Results from the ROCKET AF trial. *Hear Rhythm* **11**:925–932.

US FDA (2009a) MULTAQ (dronedarone) briefing document.

US FDA (2009b) MULTAQ (dronedarone) clinical pharmacology and biopharmaceutics review.

US FDA (2011b) XARELTO (rivaroxaban) product information.

FOOTNOTES

This work was supported by the Singapore Ministry of Education Tier 1 Academic Research Funding [Grant R-148-000-193-112] and the National University of Singapore, Department of Pharmacy, Final Year Project Funding [Grant C-148-000-003-001] provided to Eric Chun Yong Chan.

Note: Eleanor Jing Yi Cheong, Janice Jia Ni Goh and Yanjun Hong contributed equally to the manuscript.
FIGURE LEGENDS

Figure 1. Chemical structures of (A) amiodarone, (B) dronedarone, (C) NDEA and (D) NDBD

Figure 2. Reversible inhibition of recombinant CYP2J2 (rCYP2J2) by dronedarone and NDBD. Formation rate of morpholinone hydroxylated metabolite was plotted against inhibitor concentration and fitted in the Michaelis–Menten kinetic model to calculate the inhibition constant K_i for (A) dronedarone and (B) NDBD towards rCYP2J2. Lineweaver–Burk plots (Fig. 2C-D) exhibit mixed competitive inhibition of rCYP2J2 by dronedarone and NDBD. Each point represents mean and S.D of triplicate experiments.

Figure 3. Reversible inhibition of recombinant CYP3A4 (rCYP3A4) by amiodarone, NDEA, dronedarone and NDBD. Formation rate of morpholinone hydroxylated metabolite was plotted against inhibitor concentration and fitted in the Michaelis–Menten kinetic model to calculate the inhibition constant K_i for (A) amiodarone, (B) NDEA, (C) dronedarone and (D) NDBD towards rCYP3A4. Lineweaver–Burk plots (Fig. 3E-H) exhibit mixed competitive inhibition of rCYP3A4 by amiodarone and NDEA and competitive inhibition of rCYP3A4 by dronedarone and NDBD. Each point represents mean and S.D of triplicate experiments.

Figure 4. Time- and concentration-dependent inactivation of recombinant CYP2J2 by (A) dronedarone and (B) NDBD using rivaroxaban as the probe substrate. Observed inactivation rates (k_{obs}) were plotted against inactivator concentrations to calculate the inactivation kinetic constants, k_{inact} and K_i for (C) dronedarone and (D) NDBD, respectively. Each point in (A and B) represents the mean and S.D. of triplicate experiments.

Figure 5. Time- and concentration-dependent inactivation of recombinant CYP3A4 by (A) amiodarone, (B) NDEA, (C) dronedarone and (D) NDBD using rivaroxaban as the probe substrate. Observed inactivation rates (k_{obs}) were plotted against inactivator concentrations to calculate the
inactivation kinetic constants, k_{inact} and K_i for (E) amiodarone, (F) NDEA (G) dronedarone and (H) NDBD, respectively. Each point in (A-D) represents the mean and S.D. of triplicate experiments.

Figure 6. Inhibition of P-gp mediated transport of 10 µM of rivaroxaban by amiodarone, NDEA, dronedarone and NDBD. IC$_{50}$ values, determined by nonlinear regression, are (A) 10.3 µM for amiodarone, (B) 9.20 µM for NDEA, (C) 1.83 µM for dronedarone and (D) 76.3 µM for NDBD. Each point (in A-D) represents the mean and S.D. of triplicate experiments.
Table 1. Relevant in vivo concentrations of amiodarone, dronedarone and their metabolites that were incorporated into mechanistic static models

<table>
<thead>
<tr>
<th></th>
<th>Amiodarone</th>
<th>NDEA</th>
<th>Dronedarone</th>
<th>NDBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[I]_H$ (inactivation) a (µM)</td>
<td>0.12</td>
<td>0.18</td>
<td>0.00063</td>
<td>0.0045</td>
</tr>
<tr>
<td>$[I]_H$ (reversible inhibition) b (µM)</td>
<td>0.15</td>
<td>0.18e</td>
<td>0.021</td>
<td>0.0045e</td>
</tr>
<tr>
<td>$[I]_G$ c (µM)</td>
<td>7.50</td>
<td>NA</td>
<td>40.4</td>
<td>NA</td>
</tr>
<tr>
<td>$[I]_d$ (µM)</td>
<td>2.99</td>
<td>2.80</td>
<td>0.21</td>
<td>0.21</td>
</tr>
</tbody>
</table>

a $[I]_H$ (inactivation), concentration of inactivator at the enzyme active site in the liver defined as the systemic steady state unbound peak plasma concentration ($f_{ub} \times C_{SS,max}$).

b $[I]_H$ (inhibition), concentration of inhibitor at the enzyme active site in the liver defined as the hepatic portal inlet steady state unbound C_{max} ($f_{ub} \times (D \times k_a \times F_a + C_{SS,max})$) where D is total daily oral dose of the inhibitor, k_a is the oral absorption rate constant, F_a is the product of the fractions absorbed and escaping intestinal metabolism and Q_H is the hepatic blood flow (1450 mL/min).

c $[I]_G$, concentration of inactivator/inhibitor at the enterocyte during absorption defined as $\frac{D \times k_a \times F_a}{Q_g}$ where f_a is the fraction of the inactivator/inhibitor dose absorbed into the gut wall and Q_g is the enteroctytic blood flow (248 mL/min).

d $[I]$: peak plasma concentration of the inhibitor.

e $[I]_H$ (reversible inhibition) for NDEA and NDBD is defined as the systemic steady state unbound peak plasma concentration.

Drug-dependent parameters necessary for the derivations of these in vivo concentrations are presented in the Supplementary Table 2.
Table 2. CYP3A4 and CYP2J2 reversible inhibition kinetic parameters for amiodarone and NDEA, dronedarone and NDBD using rivaroxaban metabolite peak area ratio as a surrogate measurement of product formation. Data represented as mean ± S.D.

<table>
<thead>
<tr>
<th></th>
<th>CYP3A4</th>
<th>CYP2J2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_i (µM)</td>
<td>K_i (µM)</td>
</tr>
<tr>
<td>Amiodarone</td>
<td>0.226 ± 0.050</td>
<td>NA</td>
</tr>
<tr>
<td>NDEA</td>
<td>0.239 ± 0.053</td>
<td>NA</td>
</tr>
<tr>
<td>Dronedarone</td>
<td>0.64 ± 0.045</td>
<td>0.93 ± 0.11</td>
</tr>
<tr>
<td>NDBD</td>
<td>1.03 ± 0.053</td>
<td>2.53 ± 0.33</td>
</tr>
</tbody>
</table>

NA not applicable
Table 3. CYP3A4 and CYP2J2 inactivation kinetic parameters for amiodarone and NDEA, dronedarone and NDBD using morpholinone hydroxylation of rivaroxaban as a surrogate measurement of residual enzymatic activity. Data represented as mean ± S.D.

<table>
<thead>
<tr>
<th>CYP3A4</th>
<th>K_I (µM)</th>
<th>k_{inac} (min$^{-1}$)</th>
<th>k_{inac}/K_I (min$^{-1}$/mM$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amiodarone</td>
<td>0.45 ± 0.12</td>
<td>0.058 ± 0.0045</td>
<td>129</td>
</tr>
<tr>
<td>NDEA</td>
<td>0.095 ± 0.070</td>
<td>0.037 ± 0.0056</td>
<td>389</td>
</tr>
<tr>
<td>Dronedarone</td>
<td>0.30 ± 0.087</td>
<td>0.056 ± 0.0046</td>
<td>185</td>
</tr>
<tr>
<td>NDBD</td>
<td>0.88 ± 0.26</td>
<td>0.047 ± 0.0052</td>
<td>53.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CYP2J2</th>
<th>K_I (µM)</th>
<th>k_{inac} (min$^{-1}$)</th>
<th>k_{inac}/K_I (min$^{-1}$/mM$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amiodarone</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>NDEA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Dronedarone</td>
<td>0.031 ± 0.017</td>
<td>0.021 ± 0.0017</td>
<td>677</td>
</tr>
<tr>
<td>NDBD</td>
<td>0.037 ± 0.014</td>
<td>0.025 ± 0.0014</td>
<td>676</td>
</tr>
</tbody>
</table>

NA not applicable
Table 4. Prediction of metabolic and transporter-mediated DDI upon concomitant administration of rivaroxaban with amiodarone, dronedarone and their metabolites using mechanistic static modeling

<table>
<thead>
<tr>
<th>Precipitant</th>
<th>Inhibition of hepatic metabolism</th>
<th>Inhibition of hepatic and gut metabolism</th>
<th>Inhibition of P-gp mediated efflux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amiodarone</td>
<td>1.22</td>
<td>1.37</td>
<td>1.09</td>
</tr>
<tr>
<td>NDEA</td>
<td>1.22</td>
<td>NA</td>
<td>1.13</td>
</tr>
<tr>
<td>Dronedarone</td>
<td>1.17</td>
<td>1.31</td>
<td>1.09</td>
</tr>
<tr>
<td>NDBD</td>
<td>1.26</td>
<td>NA</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

n.d. not determined
NA not applicable
Table 5. US FDA Guidelines for Relative Risk of DDIs based on Observed Increases in AUC for Victim Drug

<table>
<thead>
<tr>
<th>Category of Relative Risk</th>
<th>Observed Changes in AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong DDI</td>
<td>≥5-fold increase in AUC</td>
</tr>
<tr>
<td>Moderate DDI</td>
<td>≥2 but <5-fold increase in AUC</td>
</tr>
<tr>
<td>Weak DDI</td>
<td>≥1.25 but <2-fold increase in AUC</td>
</tr>
</tbody>
</table>
Figure 2

A

Rivaroxaban Metabolite Peak Area Ratio vs. Rivaroxaban Concentration (μM)

B

Rivaroxaban Metabolite Peak Area Ratio vs. Rivaroxaban Concentration (μM)

C

1/[S] (μM⁻¹) vs. 1/[S] (μM⁻¹)

D

1/[S] (μM⁻¹) vs. 1/[S] (μM⁻¹)
Figure 3
Figure 4
Figure 5