Identification of flavin-containing monooxygenase 5 (FMO5) as a regulator of glucose homeostasis and a potential sensor of gut bacteria

Institute of Structural and Molecular Biology, University College London, London, UK (FS, SGGM, BA O’B, DF, SV, CRC, IRP, ES)

School of Biological and Chemical Sciences, Queen Mary University of London, London, UK (IRP)
DMD #76612

Running title: FMO5 regulates glucose homeostasis and senses gut bacteria

Corresponding author: Elizabeth A. Shephard, Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK

Phone: +44 (0) 2076792321

Email: e.shephard@ucl.ac.uk

Number of text pages: 29
Number of tables: 0
Number of figures: 5
Number of References: 55
Number of words in Abstract: 249
Number of words in Introduction: 592
Number of words in Discussion: 1,221

Abbreviations: AUC, area under the curve; C3, complement component 3; FMO, flavin-containing monooxygenase; GTT, glucose tolerance test; iAUC, inverse area under the curve; IST, insulin sensitivity test; PXR, pregnane X receptor; RELM β, resistin-like molecule β; TNFα, tumor necrosis factor α; WAT, white adipose tissue; WT, wild-type.
Abstract

We have previously identified flavin-containing monooxygenase 5 (FMO5) as a regulator of metabolic ageing. The aim of the present study was to investigate the role of FMO5 in glucose homeostasis and the impact of diet and gut flora on the phenotype of mice in which the Fmo5 gene has been disrupted (Fmo5−/− mice). In comparison with wild-type (WT) counterparts, Fmo5−/− mice are resistant to age-related changes in glucose homeostasis and maintain the higher glucose tolerance and insulin sensitivity characteristic of young animals. When fed a high-fat diet they are protected against weight gain and reduction of insulin sensitivity. The phenotype of Fmo5−/− mice is independent of diet and the gut microbiome and is determined solely by the host genotype. Fmo5−/− mice have similar metabolic characteristics to germ-free mice indicating that FMO5 plays a role in sensing or responding to gut bacteria. In WT mice, FMO5 is present in the mucosal epithelium of the gastrointestinal tract where it is induced in response to a high-fat diet. In comparison with WT mice, Fmo5−/− mice have fewer colonic goblet cells and they differ in the production of the colonic hormone resistin-like molecule β. Fmo5−/− mice have lower concentrations of tumor necrosis factor α in plasma and of complement component 3 in epididymal white adipose tissue, indicative of improved inflammatory tone. Our results implicate FMO5 as a regulator of body weight and of glucose disposal and insulin sensitivity and, thus, identify FMO5 as a potential novel therapeutic target for obesity and insulin resistance.
INTRODUCTION

Flavin-containing monooxygenases (FMOs) (EC 1.14.13.8) of mammals play an important role in the NADPH-dependent oxidative metabolism of a wide array of foreign chemicals (Krueger and Williams, 2005). FMOs 1, 2 and 3 catalyze the N- and S-oxygenation of a structurally diverse range of xenobiotics, including therapeutic drugs, dietary components and environmental pollutants (Krueger and Williams, 2005; Phillips et al., 2007). FMO5 differs markedly from FMOs 1, 2 and 3 with respect to its substrate specificities (Phillips and Shephard, 2017). Although FMO5 catalyzes the N-oxygenation of short-chain aliphatic primary amines such as N-octylamine (Overby et al., 1995) and the S-oxygenation of S-methyl-esonarimod, an active metabolite of the anti-rheumatic esonarimod (Ohmi et al., 2003; Zhang et al., 2007), it is apparently more efficient in catalyzing the oxygenation of a variety of carbonyl compounds, via a Baeyer-Villiger process (Fiorentini et al., 2016), including the anti-cancer drug E7016 (Lai et al., 2011) and the antibacterial agent MRX-I (Meng et al., 2015). FMOs 1, 2 and 3 (Siddens et al., 2014) and FMO5 (Fiorentini et al., 2016) can act also as NADPH oxidases, producing hydrogen peroxide.

In human and mouse the tissue-specific pattern of expression of FMO5 is similar, unlike those of FMO1 or FMO3, which show distinct differences in hepatic expression between these species (Dolphin et al., 1991; 1996; Janmohamed et al., 2004). FMO5 is most highly expressed in liver (Overby et al., 1997; Zhang and Cashman, 2006) and skin (Janmohamed et al., 2001) and moderately expressed in other tissues, including the small intestine (Hernandez et al., 2004; Zhang and Cashman, 2006; Fu et al., 2016).

Very few single-nucleotide polymorphisms (SNPs) have been identified in the coding region of the human FMO5 gene and none has been shown to influence enzyme activity (Furnes et
al., 2003; Phillips et al., 2007). *FMO5* gene expression, however, is increased by several chemicals, including the hormones progesterone (Miller et al., 1997) and testosterone (Houseman et al., 2015) and the pregnane X receptor (PXR) ligands hyperforin (Krusekopf and Roots, 2005) and rifampicin (Rae et al., 2001; Houseman et al., 2015). Activation of PXR has been proposed as a factor contributing to type 2 diabetes (Hukkanen et al., 2014). Interindividual variation in the expression of FMO5 in human liver has been reported (Overby et al., 1997). Given the inducible nature of the gene, such variation is likely due to physiological or environmental factors.

Through the use of knockout mouse lines we have shown that, in addition to their involvement in the metabolism of foreign chemicals, two members of the FMO family, FMO1 and FMO5, play roles in endogenous metabolism. FMO1 has been identified as a regulator of energy homeostasis (Veeravalli et al., 2014) and FMO5 as a promoter of metabolic ageing (Gonzalez Malagon et al., 2015). *Fmo5*−/− mice exhibit an age-related lean phenotype: in comparison with their wild-type (WT) counterparts, as they age they gain less weight, store less fat in white adipose tissue (WAT), have lower plasma concentrations of glucose and cholesterol and enhanced whole-body energy expenditure, with no increase in physical activity (Gonzalez Malagon et al., 2015).

The present study extends our characterization of the metabolic phenotype of *Fmo5*−/− mice, focusing on the potential role of FMO5 in regulating glucose homeostasis and the effects on the phenotype of diet and gut flora. We show that *Fmo5*−/− mice are resistant to age-related changes in glucose homeostasis and are protected against weight gain and reduction of insulin sensitivity in response to a high-fat diet. The phenotype is independent of the gut microbiome and our results implicate FMO5 as an intestinal microbial sensor.
MATERIALS AND METHODS

Animal maintenance

Homozygous knockout mice (Fmo5-/-) used in this study were generated on the C57BL/6J background and back-crossed for eight generations, as described previously (Gonzalez Malagon et al., 2015). WT C57BL/6J mice were used as controls. Both mouse lines were bred and housed in the same room at UCL. All experiments were done on male animals. Mice were given free access to water and fed ad libitum with a standard chow diet (Teklad Global 18% Protein Rodent Diet, Harlan Laboratories, Inc., Madison, WI) or, where specified, a high-fat diet (AIN-93M w/ 35 % Kcal Fat, TestDiet, St. Louis, MO). Tissue and blood samples were collected between 9:30 a.m. and 12:00 noon, unless stated otherwise. Animal procedures were carried out in accordance with the UK Animal Scientific Procedures Act and with local ethics committee approval (AWERB) and appropriate Home Office Licenses.

Plasma analyses

Blood was collected and plasma isolated as described (Hough et al., 2002). Mice fed a high-fat diet and their standard chow-fed age-matched controls were starved overnight before blood withdrawal. The concentration of glucose in plasma was determined via an autoanalyser at the MRC Mammalian Genomics Unit, Harwell, Oxfordshire, UK and in whole blood through the use of a CONTOUR® XT Meter (Bayer AG, Leverkusen, Germany). Commercially available ELISA kits were used to determine plasma concentrations of insulin (Rat/Mouse Insulin ELISA, Millipore, Watford, Herts, UK) and TNFα (TNFα Mouse EIA kit, Enzo, Exeter, Devon, UK). Plasma lipopolysaccharide was measured by Lonza Endotoxin Service Europe, Verviers, Belgium, using the Limulus
Intraperitoneal glucose tolerance and insulin sensitivity tests

Glucose tolerance tests (GTT) and insulin sensitivity tests (IST) were performed as described (Heikkinen et al., 2007) on animals that had been fasted either overnight (15 h) (GTT) or for 6 h (IST). Fasting blood glucose was measured through the use of a CONTOUR® XT Meter (Bayer AG). Animals were then injected intraperitoneally with glucose (2 g/kg bodyweight) (GTT) or insulin (0.25 IU/kg bodyweight) (ITT). Blood glucose was then measured 15, 30, 60, 90 and 120 (GTT) or 15, 30, 45, 60, 75 and 90 (IST) min post injection. For statistical analysis, area under the curve (AUC) or inverse area under the curve (iAUC) was calculated as appropriate (Heikkinen et al., 2007).

Intestinal microbiota analysis

DNA was isolated from frozen fecal pellets through the use of the Isolate Faecal DNA Kit (Bioline, London, UK) according to the manufacturer’s recommendations, except for an additional 30 min of shaking after addition of lysis buffer. Bacterial 16S rRNA gene sequences were amplified using the universal 16S rRNA primer pair, forward 8FE (5’-AGAGTTTGATCCTGGCTCAG-3’) (Salzman et al., 2002) and reverse 1387r (5’-GGGCGGTGTGTCGACGCGC-3’) (Marchesi et al., 1998), and Biotaq™ DNA polymerase (Bioline). Approximately 16 ng of fecal DNA and 5 pmoles each of forward and reverse primers were used per 25-µL reaction volume. PCR conditions were 5 min at 95 °C, followed by 30 cycles of 95 °C for 1 min, 51 °C for 1 min and 72 °C for 1 min, and a final elongation at 72 °C for 5 min. Amplification products were ligated into pGEM-T (Promega,
Southampton, Hants, UK). Electrocompetent *Escherichia coli* JM109 cells were transformed with ligation products. Recombinant colonies were individually stabbed into agar-containing 96-well plates. Plasmid isolation and DNA sequencing were performed by LGC Genomics GmbH (Berlin, Germany). Sequences were identified by comparison with known 16S rRNA gene sequences in the Ribosomal Database Project (http://rdp.cme.msu.edu).

Antibiotic treatment

At 30 weeks of age, animals were given ampicillin (1 g.L\(^{-1}\)) and neomycin (0.5 g.L\(^{-1}\)) in their drinking water for 14 days. Antibiotic-containing water was replenished twice weekly and animals were given free access to the standard chow diet.

Histology and immunohistochemistry

Sections of digestive tract were fixed in 10 % (v/v) neutral buffered formalin (Leica Biosystems, Milton Keynes, Bucks, UK). Tissue samples were embedded in paraffin and sections stained with hemotoxylin and eosin at the MRC Mary Lyon Centre (Harwell, Oxon, UK). Immunohistochemistry of tissue sections was carried out by UCL Advanced Diagnostics (London, UK). FMO5 was detected using a polyclonal antibody (16864-1-AP, ProteinTech™, Manchester, UK), diluted 1:100 (Antibody Diluent Background Reducing, Dako, Ely, Cambs, UK). RELMβ was detected using a polyclonal antibody (ab11429, Abcam®, Cambridge, Cambs, UK), diluted 1:400 (Bond™ Primary Antibody Diluent, Leica Biosystems). Cell nuclei were counterstained with hematoxylin. Colonic sections were stained with Alcian Blue and counterstained with Neutral Red (UCL Advanced Diagnostics). Goblet cells were quantified as described (Mello *et al.*, 2012).
Western blot analysis

Fecal samples, colon contents, liver and epididymal adipose tissues were homogenized using a Tissue Lyser II (Qiagen, Crawley, W Sussex, UK) in ice-cold Triton lysis buffer (1% Triton X-100, 140 mM NaCl, 10 mM Tris-HCl, pH 8, 1 mM EDTA, 1 mM PMSF) containing Halt™ Protease and Phosphatase Inhibitor Cocktail (Thermo Scientific, Loughborough, Leics, UK). To ensure sufficient homogenization samples were agitated for an additional 15 min (liver and adipose tissue) or 40 min (fecal and colon samples) at 4 °C. Homogenates were centrifuged at 12,000 g for 20 min at 4 °C. For detection of FMO5 in fecal samples, homogenates were concentrated by precipitation with trichloroacetic acid, then resuspended in 200 mM Tris-HCl (pH 8.5), 10 mM EDTA, 6 M urea, 0.5% (w/v) SDS. Samples were adjusted to final concentrations of 50 mM Tris-HCl, pH 6.8, 10% (v/v) glycerol, 2% (w/v) SDS, 0.25% (w/v) bromophenol blue, 100 mM DTT. Samples were then heated at 95 °C for 5 min and analysed by SDS-PAGE and western blotting. Proteins were detected by the use of antibodies against FMO5 (16864-1-AP, ProteinTech™), beta-actin (Proteintech 66009-1-Ig), RELMβ (ab11429, Abcam®), complement component 3 (C3) (204869, Millipore) and enolase (sc-15343, Santa Cruz Biotechnology®, Heidelberg, Germany). For primary antibodies against FMO5, RELMβ and enolase a secondary anti-rabbit antibody conjugated to horseradish peroxidase (HRP) (Donkey Anti- Rabbit IgG H+L (HRP), Abcam®) was used. For beta-actin, goat anti-mouse secondary antibody IR 680 [Alexa Flour A21057] (Life Technologies Ltd, Paisley, UK) was used. For C3, a secondary anti-goat antibody conjugated to HRP (Rabbit Anti-Goat IgG-HRP conjugate, Alpha Diagnostic, San Antonio, TX) was used. Blots were incubated with secondary antibodies for 1 h at room temperature before enhanced chemiluminescence detection, as described previously (Gonzalez Malagon et al.,
DMD #76612

2015), using an Odyssey® Fc Dual-Mode Imaging System (LiCor®, Cambridge, Cambs, UK). For fecal and colon contents, to control for protein loading, the amount of protein loaded onto each well was assessed by scanning densitometry of the whole length of each lane using GelQuant.Net software, version 1.8.2 (biochemlabsolutions.com). Individual protein signals on western blots were quantified using LI-COR Image Studio Lite, version 3.1.4.

Statistical analysis

Data are expressed as mean ± standard error of the mean (SEM). Statistical significance was determined using an unpaired two-tailed t-test and GraphPad Prism (V. 6.0e) (GraphPad Software, Inc., La Jolla, CA). The following symbols were used throughout all figures and text to indicate the significance value: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

RESULTS

Fmo5^{−/−} mice are resistant to age-related changes in glucose homeostasis and insulin sensitivity

The plasma concentration of glucose in 6-week-old Fmo5^{−/−} mice was similar to that in WT mice (Fig. 1A). From 6 to 15 weeks of age it decreased, to the same extent, in both Fmo5^{−/−} and WT mice. A similar decrease has been reported for mice as they age from immature to young adult (Bailey and Flatt, 1982). From 15 weeks of age, the plasma glucose of WT, but not of Fmo5^{−/−} mice, increased and by 30 weeks was 10.85 ± 0.20 mmol/l (n = 18) in WT and 9.21 ± 0.35 mmol/l (n = 17) in Fmo5^{−/−} mice (P < 0.001, Fmo5^{−/−} vs WT) (Fig. 1A). The results confirm and extend our previous findings on 10- and 30-week-old mice (Gonzalez Malagon <i>et al.</i>, 2015) and indicate that the lower plasma concentration of glucose in Fmo5^{−/−}
compared with WT mice at 30 weeks of age is the result of a lack of increase, rather than a decrease, in plasma glucose of \(Fmo5^{-/-} \) mice as they age from 15 to 30 weeks. At 15 and 30 weeks of age both WT and \(Fmo5^{-/-} \) mice responded to a 12-h overnight withdrawal of food by decreasing their plasma glucose by \(\sim 25\% \) (data not shown).

At 10 weeks of age, the plasma concentration of insulin in \(Fmo5^{-/-} \) and WT mice was the same (Fig. 1B). As mice aged, the plasma insulin of WT mice increased, but that of \(Fmo5^{-/-} \) animals remained the same and by 30 weeks of age the plasma insulin concentration of WT mice \((1.92 \pm 0.13 \text{ ng/ml, } n = 3)\) was 3-fold more than that of \(Fmo5^{-/-} \) mice \((0.63 \pm 0.08 \text{ ng/ml, } n = 3)\) \((P < 0.01)\). Therefore, at 15 and 30 weeks of age, although the plasma concentration of glucose of \(Fmo5^{-/-} \) mice was the same or lower than that of WT mice (Fig. 1A), they required less insulin to maintain the concentration.

Glucose tolerance of \(Fmo5^{-/-} \) and WT mice was the same at 15 weeks of age (Fig. 1C). By 30 weeks, \(Fmo5^{-/-} \) mice, despite having lower plasma insulin than WT mice (Fig. 1B), had significantly higher glucose tolerance (Fig. 1D). The similarity in peak glucose suggests no difference in pancreatic \(\beta \)-cell function between \(Fmo5^{-/-} \) and WT mice, whereas the larger AUC of WT mice is indicative of greater whole-body insulin resistance. As early as 10 weeks of age \(Fmo5^{-/-} \) mice responded to insulin more quickly and to a greater extent than did WT mice (Fig. 1E), indicating that the former had greater basal insulin sensitivity. Our results demonstrate that \(Fmo5^{-/-} \) mice are resistant to the age-related changes in glucose homeostasis and insulin sensitivity exhibited by their WT counterparts.

\(Fmo5^{-/-} \) mice are resistant to weight gain and reduction of insulin sensitivity in response to a high-fat diet.
When fed a high-fat diet for a period of six weeks, 33-week-old WT mice increased in weight from 37.6 ± 0.7 g to 46.2 ± 0.9 (n = 7), a gain of 23% (Fig. 2A). In contrast, Fmo5^{−/−} mice gained no weight on the high-fat diet and by 39 weeks of age weighed 33.8 ± 1.0 g (n = 6), 27% less than WT mice (Fig. 2A). When fed a standard chow diet over the same period neither WT nor Fmo5^{−/−} mice of this age increased weight significantly (data not shown). On a standard chow diet Fmo5^{−/−} mice eat slightly more than WT mice (Gonzalez Malagon et al., 2015). In the case of the high-fat diet, owing to the consistency of the food pellets, which caused them to crumble when eaten, it was not possible to accurately measure food intake. However, the food hoppers of Fmo5^{−/−} mice had to be replenished more frequently than those of WT mice, suggesting that, as is the case for the standard chow diet, when fed a high-fat diet Fmo5^{−/−} mice do not eat less than WT mice. Our results demonstrate that, in contrast to WT mice, Fmo5^{−/−} mice are resistant to high-fat-diet-induced weight gain and that this is unlikely to be a consequence of a reduced intake of food.

In response to a 12-h overnight withdrawal of food, the plasma concentration of glucose in Fmo5^{−/−} mice fed a high-fat diet was reduced to 6.98 ± 0.78 mmol/l (n = 6), which was similar to the concentration in fasted Fmo5^{−/−} mice on a standard chow diet (7.28 ± 0.20 mmol/l, n = 23). However, WT mice responded less well to a 12-h fast when on a high-fat diet than when on a standard chow diet, reducing plasma glucose to 9.61 ± 0.53 mmol/l (n = 7) and 7.97 ± 0.27 mmol/l (n = 20), respectively (P < 0.05).

The plasma concentration of insulin of WT mice fed a high-fat diet was 10-fold higher than that of WT mice fed a standard chow diet (Fig. 2B). In contrast, in Fmo5^{−/−} mice the high-fat diet had a much smaller effect on plasma insulin, which was increased to a concentration similar to that of WT mice on a standard chow diet (Fig. 2B). The high-fat diet significantly
reduced the glucose tolerance of WT mice, but had no effect on that of Fmo5⁻/⁻ mice (Fig. 2C). Our results demonstrate that, in comparison with WT mice, Fmo5⁻/⁻ mice are resistant to changes in glucose homeostasis as a consequence of a high-fat diet. Our finding that disruption of the Fmo5 gene renders mice resistant to weight gain and reduction of insulin sensitivity in response to a high-fat diet, suggests that FMO5 is involved in mediating such dietary-induced physiological effects.

FMO5 is induced in the intestine in response to a high-fat diet

The amount of FMO5 present in fecal samples from WT mice was 6-fold more from animals fed a high-fat diet than from those fed a standard chow diet (Fig. 2D), suggesting that intestinal expression of the protein was increased in response to a high-fat diet. However, this was not the case in liver (Fig. 2E), indicating that the high-fat-diet-induced expression of FMO5 was tissue-specific.

The phenotype of Fmo5⁻/⁻ mice is independent of the gut microbiota

Five intestinal bacterial phyla were identified in WT and Fmo5⁻/⁻ mice fed a standard chow diet: Actinobacteria, Proteobacteria, Deferribacteres, Firmicutes and Bacteroidetes, of which the Firmicutes and Bacteroidetes were the most abundant (Fig. 3A). This is in agreement with previous studies of WT mice (Ley et al., 2005). At 7 weeks of age, the Bacteroidetes dominated and the gut microbial community ratio of Bacteroidetes to Firmicutes was the same (4:1) in WT and Fmo5⁻/⁻ mice (Fig. 3A). As WT mice aged, the relative abundance of Bacteroidetes decreased and that of Firmicutes increased, so that by 15 weeks of age the ratio of the phyla had decreased to ~1 (Fig. 3A). A similar, but slower,
change in the composition of gut flora occurred in the Fmo5−/− mice, with the Bacteroidetes to Firmicutes ratio decreasing to ~3 at 15 weeks and ~1.7 at 30 weeks of age (Fig. 3A). The relative abundance of Actinobacteria, Proteobacteria and Deferrribacteres was similar in WT and Fmo5−/− mice and did not change with age (Fig. 3A).

Although the ratio of Bacteroidetes to Firmicutes phyla was the same in 7-week-old WT and Fmo5−/− mice, the abundance of several bacterial families differed (Fig. 3B). For instance, Porphyromonadaceae were more prevalent in WT mice and Prevotellaceae and Lachnospiraceae in Fmo5−/− animals. By 30 weeks of age, the Erysipelotrichaceae family, which was not detected in 7-week-old mice, was twice as abundant in WT as in Fmo5−/− animals. It is this family that contributed most to the difference in the ratio of Bacteroidetes to Firmicutes between 30-week-old WT and Fmo5−/− mice (Fig. 3B).

Six weeks on a high-fat diet had little effect on the relative abundance of Bacteroidetes and Firmicutes in WT mice, decreasing the ratio of the phyla from 1.0 to 0.9, but had a marked effect in Fmo5−/− mice, decreasing the ratio from ~1.7 to ~0.4 (Fig. 3A). A lower ratio of Bacteroidetes to Firmicutes has been associated with an obesogenic state (Ley et al., 2005; Turnbaugh et al., 2009).

The relative abundance of several bacterial families changed in response to a high-fat diet (Fig. 3B). In the Bacteroidetes phylum, Rikenallaceae, reported to increase in response to high-fat feeding (Daniel et al., 2014), increased in WT but not in Fmo5−/− mice, whereas Porphyromonadaceae decreased, but to a much greater extent (from 33 to 4%) in Fmo5−/− than in WT mice. Within the Firmicutes phylum, the relative abundance of Lachnospiraceae increased in Fmo5−/− but not in WT mice. The most striking change was the almost 3-fold increase in Erysipelotrichaceae in Fmo5−/− mice. On a high-fat diet this family was the most abundant, comprising about a third of the total gut microbiota in both WT and Fmo5−/− mice.
Erysipelotrichaceae have been reported to increase with diet-induced obesity (Kaakoush, 2015). The marked increase in the abundance of this family in Fmo5−/− mice fed a high-fat diet was not, however, accompanied by an increase in weight (Fig. 2A). The results indicate that in the Fmo5−/− mice the composition of gut microbiota changes in response to diet independently of an obese phenotype and that the phenotype of Fmo5−/− mice is not influenced by diet or gut flora.

Treatment with antibiotics for two weeks had a marked effect on WT mice, reducing the plasma concentration of glucose (Fig. 3C) and of insulin (Fig. 3D), but had no significant effect on Fmo5−/− mice (Fig. 3C and D). Antibiotic treatment also significantly improved glucose tolerance of WT mice (Fig. 3E). In the case of Fmo5−/− mice, although at initial time points in the GTT glucose concentrations were lower in antibiotic-treated mice, the AUC was not significantly different (Fig. 3E), indicating that antibiotic treatment did not significantly affect glucose tolerance of the Fmo5−/− mice. Plasma glucose, plasma insulin and glucose tolerance of antibiotic-treated WT mice were similar to those of non-antibiotic-treated Fmo5−/− mice (Fig. 3). Therefore, these metabolic parameters were profoundly influenced by gut flora in WT mice, but not in Fmo5−/− mice, indicating that the phenotype of Fmo5−/− mice is independent of the gut microbiota and is determined solely by host genotype.

FMO5 is expressed throughout the murine digestive tract

To determine whether FMO5 is expressed in the gut, sections of the digestive tract of WT mice were analysed by immunohistochemistry (Fig. 4). Sections from the gut of Fmo5−/− mice were used as a negative control. The results revealed that FMO5 was present in the stomach, duodenum, jejunum, ileum (Fig. 4A) and colon (Fig. 4B). In each of these tissues, FMO5 was localized to the columnar epithelium of the mucosa, at the luminal surface. In the stomach, a
signal associated with the lamina propria, at the base of the mucosa, was also observed in sections from Fmo5−/− mice, indicating that it was due to non-specific binding of antibody. Analysis of sections of small intestine (Fig. 4A) and colon (Fig. 4B) of Fmo5−/− mice resulted in no signal, indicating that signals obtained from WT mice were specific for FMO5. Analysis of intestinal ‘Swiss rolls’ confirmed that FMO5 was expressed throughout the length of both the small intestine and colon of WT mice (data not shown).

In both small (Fig. 4A) and large intestine (Fig. 4B) FMO5 was present throughout the columnar epithelium, including within goblet cells, which are distinguished from other epithelial cells by the presence of a visible secretory granule. FMO5 was not present in the secretory granule itself, but was concentrated in the cytoplasm at the periphery of granules (Fig. 4A and B). In colon, the abundance of FMO5 increased from the base to the luminal opening of crypts (Fig. 4B), in parallel with the maturation of secretory granules.

Staining of transverse sections of stomach, small intestine and colon with hematoxylin and eosin showed no difference between WT and Fmo5−/− mice in the mucosal thickness or structure of these tissues (data not shown). Thus, although FMO5 was expressed throughout the mucosal epithelium of the murine gastrointestinal tract, in Fmo5−/− mice its absence did not affect gross morphology of the gut.

Fmo5−/− mice have fewer colonic goblet cells

Although there was no difference in colonic crypt length between WT (151.7 ± 3.6 µm, n=57) and Fmo5−/− (162.1 ± 5.0 µm, n=54) mice, the number of goblet cells per crypt was
significantly lower in \(Fmo5^{-/-} \) (15.4 ± 0.7, \(n = 54 \)) than in WT (18.5 ± 0.8, \(n = 57 \)) mice (\(P < 0.01 \)) (Fig. 4B). Because \(Fmo5^{-/-} \) mice have fewer goblet cells we examined whether this difference influenced the expression of RELMβ, a hormonally active protein present in goblet cell secretory granules and whose expression is confined to the colon (He et al., 2003). In WT mice RELMβ was localized to the crypts of the colonic mucosa, where it was concentrated in the secretory granules of goblet cells (Fig. 4C). As was the case for FMO5 (Fig. 4B), a gradient of expression of RELMβ, increasing from the base of the crypt to the luminal opening, was observed, in agreement with a previous report (He et al., 2003). A similar pattern of RELMβ expression was observed in the colon of \(Fmo5^{-/-} \) mice (Fig. 4C), indicating that disruption of the \(Fmo5 \) gene had no effect on the localization of RELMβ.

Analysis of proteins extracted from the luminal contents of the colon (Fig. 4C) identified an \(\sim 17 \) kDa dimeric form of RELMβ (He et al., 2003) in both WT and \(Fmo5^{-/-} \) mice. However, in WT mice an additional band, migrating at \(\sim 8 \) kDa, corresponding to the monomeric form of RELMβ (He et al., 2003), was detected. Our results indicate that although \(Fmo5^{-/-} \) mice have fewer colonic goblet cells, disruption of the \(Fmo5 \) gene does not affect expression of RELMβ, but may affect production of the monomeric form of the protein in the colon. The expression of RELMβ was markedly reduced by antibiotic treatment (data not shown), as previously reported (Hildebrandt et al., 2009).

\(Fmo5^{-/-} \) mice have lower amounts of inflammatory markers

In view of the potential effect of \(Fmo5 \) on production of the monomeric form of RELMβ we measured markers of inflammation because, in addition to acting as a mucosecretagogue, RELMβ is also regarded as an inflammatory mediator (Hogan et al., 2006; McVay et al.,...
DMD #76612

2006; Krimi et al., 2008). The plasma concentration of the inflammatory cytokine TNFα was ~70% lower in Fmo5−/− than in WT mice (Fig. 5A). Antibiotic treatment decreased the plasma concentration of TNFα in WT mice to a level similar to that in untreated Fmo5−/− mice, but had no effect on plasma TNFα in Fmo5−/− mice (Fig. 5A). As was the case with plasma TNFα, the amount of C3, a visceral adipose inflammatory marker (Hertle et al., 2014), was lower in epididymal adipose tissue of Fmo5−/− than of WT mice (Fig. 5B). The plasma concentration of lipopolysaccharide in Fmo5−/− mice (3.34 ± 0.23 EU/mL, n = 3) was the same as that in WT mice (3.11 ± 0.06 EU/mL, n = 3), indicating that disruption of the Fmo5 gene resulted in no change in intestinal barrier integrity.

Discussion

As WT C57BL/6J mice aged they exhibited increased plasma concentrations of glucose and insulin and reduced glucose tolerance and insulin sensitivity. In contrast, mice in which the Fmo5 gene had been disrupted, Fmo5−/− mice, were resistant to these changes in glucose homeostasis and maintained the higher glucose tolerance and insulin sensitivity characteristic of young animals. In response to a high-fat diet, WT mice increased weight, became hyperinsulinemic and displayed markedly reduced glucose tolerance, indicative of increased whole-body insulin resistance. Again, Fmo5−/− mice were resistant to these changes indicating that their metabolic phenotype is independent of diet. Our results demonstrate that disruption of the Fmo5 gene protects mice against diet-induced obesity and the potentially deleterious effects on glucose homeostasis of both age and consumption of high levels of fat and indicate that FMO5 plays a role in the regulation of body weight and of glucose disposal and insulin sensitivity.
Other mouse knockout lines are resistant to high-fat-diet-induced weight gain, but in most cases, in contrast to Fmo5, the gene disrupted encodes a protein with a known role in fat metabolism or its regulation, for example, protein-tyrosine phosphatase 1B (Klaman et al., 2000), acetyl-CoA carboxylase 2 (Abu-Elheiga et al., 2012) and cidea (Zhou et al., 2003). However, one example in which the product of the disrupted gene is not involved in fat metabolism or its regulation is that of RELMβ (Hildebrandt et al., 2009).

Although the composition of the gut microbiota of Fmo5−/− mice changed with age and, in particular, in response to a high-fat diet to that associated with an obesogenic state, these changes had no effect on the metabolic phenotype of the mice. Disruption of a single gene, Fmo5, had a similar effect on plasma glucose, plasma insulin and glucose tolerance as did antibiotic-mediated removal of gut microbiota from WT mice. Indeed, Fmo5−/− mice display metabolic characteristics associated with mice raised in the absence of microorganisms, that is, germ-free, which, in comparison with conventionally reared mice, weigh less, store less fat, have lower plasma glucose and insulin and greater insulin sensitivity and glucose tolerance (Backhed et al., 2007; Rabot et al., 2010). The similarities with germ-free mice suggest that in Fmo5−/− mice gut flora are ‘invisible’ to the host and that FMO5 has a role in sensing or responding to gut bacteria.

Consistent with the proposed involvement of FMO5 in mediating host response to gut flora is our finding that the protein is expressed in the epithelial lining of the gastrointestinal tract. The concentration of FMO5 at the periphery of secretory granules within goblet cells of the colon and the increase in the abundance of the protein as the cells matured suggests a possible role for FMO5 in events associated with release or processing of granular components. One such component is RELMβ. Fmo5−/− mice share some characteristics of a
RELMβ-knockout mouse (Hildebrandt et al., 2009): both are protected from diet-induced obesity and protection is independent of diet-induced changes in intestinal microbiota. In addition, the expression of RELMβ, which is confined to the colon (He et al., 2003), is induced in response to a high-fat diet (Hildebrandt et al., 2009), as was the case for intestinal FMO5 (Fig. 2D).

Our results indicate that absence of FMO5 does not affect expression of RELMβ, but may affect production in the colon of the monomeric form of the hormone. Studies of resistin, which is closely related to RELMβ, indicate that the monomer is the active form of the hormone (Patel et al., 2004). If this is the case for RELMβ, our results indicate that FMO5 may facilitate production of the active monomeric form of the hormone in the colon. Given the phenotypic similarities between Fmo5−/− and RELMβ−/− mice, it is possible that these result, in part, from altered production of the RELMβ monomer in the Fmo5−/− mice.

Reduction in the plasma concentration of the inflammatory cytokine TNFα as a consequence of disruption of the Fmo5 gene indicates that FMO5 has a deleterious effect on systemic inflammatory tone. RELMβ has been identified as a promoter of TNFα synthesis and release from macrophages (McVay et al., 2006). Consequently, the effect of FMO5 on inflammatory tone might be mediated by its influence on production of monomeric RELMβ.

In addition to its effects on inflammation, TNFα has detrimental effects on insulin sensitivity (Kwon and Pessin, 2013) and a TNFα-knockout mouse is protected against obesity-induced glucose intolerance and hyperinsulinemia (Uysal et al., 1997). Thus, our data suggest that the
enhanced whole-body insulin sensitivity of $Fmo5^{-/-}$ mice results, in part, from reduced expression of TNFα. The lower amount of C3 in epididymal WAT of $Fmo5^{-/-}$ mice is consistent with the lower plasma concentration in these animals of TNFα, which plays a role in regulating the expression of C3 (Cianflone et al., 2003). C3 is associated with the development of inflammatory-linked metabolic disorders and reduces insulin function (Engström et al., 2005; Samaras et al., 2009; Hertle et al., 2014). Our findings suggest that reduced expression of C3 in WAT, a consequence of reduced circulating TNFα, would contribute to the enhanced whole-body insulin sensitivity of $Fmo5^{-/-}$ mice. The proposed indirect effect on WAT of disruption of the $Fmo5$ gene is consistent with the lack of FMO5 expression in this tissue.

Consistent with its role as a regulator of endogenous metabolic processes, FMO5 displays little genetic variation: within the coding region only two non-synonymous SNPs have been identified, both of which are rare and occur only in individuals of recent African descent (Furnes et al., 2003; Phillips et al., 2007). FMO1, identified as a regulator of energy homeostasis (Veeravalli et al., 2014), also displays little genetic variation (Furnes et al., 2003; Phillips et al., 2007). This is in marked contrast to FMO2 and FMO3, which are highly polymorphic (Phillips et al., 2007).

A SNP (rs7541245) within an intron of the $FMO5$ gene has been reported to be marginally significantly associated with a decrease in glycemic response to metformin (Breitenstein et al., 2015). However, it is not known whether metformin can be metabolized by FMO5 and the effect of the SNP on expression or activity of FMO5 has not been established. There is an increasing appreciation of the role of the gut microbiome in metformin response (McCreight...
Thus, if FMO5 does affect metformin response our data suggest that it may do so via modulation of a host-gut microbiome interaction.

Our results have potential implications for humans. The effect that FMO5 has on the composition of the gut microbiome suggests that interindividual differences in expression of intestinal FMO5 in humans would alter the gut microbiota and, thus, have potential effects on the efficacy of orally administered drugs that are metabolized by gut bacteria.

In addition, our results indicate that interindividual variation in the expression of FMO5 (Overby et al., 1997) may contribute to differences in weight gain and insulin sensitivity and that induction of FMO5 by some therapeutics (Miller et al., 1997; Rae et al., 2001; Krusekopf and Roots, 2005) may adversely affect the metabolic health of patients. Thus, FMO5 is identified as a potential novel therapeutic target for obesity and insulin resistance. Although the lack of FMO5 apparently promotes a ‘healthy’ metabolic profile, its presence may have conferred an evolutionary advantage, particularly when food supplies were limited, by contributing to the ability of mammals, including humans, to deposit fat and increase weight.

Authorship contributions:

Participated in research design: Scott, O’Brien, Fennema, Phillips, Shephard

Conducted experiments: Scott, Gonzalez Malagon, O’Brien, Fennema, Veeravalli, Coveney and Shephard
Performed data analysis: Scott, O’Brien, Fennema, Veeravalli, Phillips, Shephard

Wrote or contributed to the writing of the manuscript: Scott, Gonzalez Malagon, O’Brien, Fennema, Veeravalli, Coveney, Phillips and Shephard

REFERENCES

DMD #76612

Fu ZD, Selwyn FP, Cui JY, and Klaassen CD (2016) RNA sequencing quantification of xenobiotic-processing genes in various sections of the intestine in comparison to the liver of male mice. Drug Metab Dispos 44:842–856.

McVay LD, Keilbaugh SA, Wong TMH, Kierstein S, Shin ME, Lehrke M, Lefterova MI,

This work was supported by the Wellcome Trust [WT093469MA, WT109685MA]; SGGM was funded by a scholarship from CONACYT, Mexico.
Figure Legends

Figure 1: *Fmo5*KO mice are resistant to age-related changes in glucose homeostasis. (A) Plasma glucose concentration of WT and *Fmo5*KO (KO) mice with age. 6 weeks: n = 4 (WT), n = 5 (KO); 8 weeks: n = 9 (WT), n = 11 (KO); 10 weeks: n = 21 (WT), n = 24 (KO); 15 weeks: n = 18 (WT), n = 23 (KO); 20 weeks: n = 10 (WT), n = 4 (KO); and 30 weeks: n = 18 (WT), n = 17 (KO). (B) Plasma insulin concentration of WT and *Fmo5*KO mice with age. 10 and 15 weeks (n = 4), 30 weeks (n = 3). (C) GTT of 15-week-old WT and *Fmo5*KO mice (n=6). Insert shows AUC. (D) GTT of 30-week-old WT and *Fmo5*KO mice (n = 5). Insert shows AUC. For GTT, mice were starved for 15 h before test. (E) Insulin sensitivity test of 10-week-old WT and *Fmo5*KO mice that had been starved for 6 h (n = 4). Insert shows inverse AUC (iAUC). Data are expressed as means ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001.

Figure 2: *Fmo5*KO mice are resistant to weight gain and changes in glucose homeostasis in response to a high-fat diet. (A) Body weight of WT and *Fmo5*KO (KO) mice fed a high-fat diet (WT, n = 7; KO, n = 6). (B) Plasma insulin concentrations of WT and KO mice fed on standard chow (SC) (n = 3) or for six weeks on a high-fat diet (HFD) (WT, n=3; KO, n=4). (C) GTT of WT and KO mice fed on SC (n = 5) or a HFD for six weeks (n = 4). Insert shows AUC. (D) Western blot analysis of fecal proteins from WT mice fed on SC or for six weeks on a HFD. Each lane represents proteins from a different mouse. M, molecular mass standards. The blot was incubated with an antibody against FMO5 and developed as described in Materials and Methods. Protein loading was assessed as described in Materials.
and Methods. (E) Western blot analysis of liver proteins from WT mice fed on SC or for six weeks on a HFD. Each lane represents proteins from a different mouse. The blot was incubated with an antibody against FMO5 or actin as the internal loading control. The blot was developed as described in Methods. Data in A, B and C are expressed as means ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001.

Figure 3: The phenotype of Fmo5−/− mice is independent of gut microbiota. Effect of age and diet on gut microbial phyla (A) and gut microbial families (B) of WT and Fmo5−/− (KO) mice. SC, mice were fed a standard chow diet; HFD, mice were fed SC then a high-fat diet for six weeks. (C) Effect of antibiotic (AB) treatment on plasma concentrations of glucose of 30-week-old mice fed a SC diet. (WT, n = 18; WT + AB, n = 4; KO, n = 17; KO + AB, n = 6). (D) Effect of antibiotic (AB) treatment on plasma insulin concentration of 30-week-old mice fed a SC diet (n = 3 for each group). (E) Effect of antibiotic treatment on glucose tolerance of 30-week-old mice fed a SC diet. +AB, antibiotic treated (WT, n = 3; KO, n = 5); -AB, untreated (n = 5). Insert shows AUC. GTT was done as described in Materials and Methods. Data in C, D and E are expressed as means ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

Figure 4: Expression of FMO5 and RELMβ in mouse intestine. (A) Immunohistochemical analysis of sections of stomach and small intestine of 30-week-old mice. Sections were incubated with an antibody against FMO5. Upper panels, WT; lower panels, Fmo5−/− (KO) mice. Scale bar = 100 µm. (B) Immunohistochemical analysis of sections of colon of 30-week-old mice. Sections incubated with antibodies against FMO5 (upper panels). Alcian blue staining of sections of colon of 30-week-old mice (lower panels). Left-hand panels, WT; right-hand panels, KO mice. Scale bar = 100 µm. (C)
Immunohistochemical analysis of sections of colon of 30-week-old mice. Sections incubated with antibodies against RELMβ (upper panels). Lower panel, western blot analysis of colonic content proteins from four WT and three KO mice, d (dimer), m (monomer), MW (molecular weight standards). Protein loading was assessed and the blot was developed as described in Materials and Methods.

Figure 5: Fmo5−/− mice have lower amounts of inflammatory markers. (A) Plasma concentration of TNFα of 30-week-old WT and Fmo5−/− (KO) mice, either untreated (WT, n = 5; KO, n = 4) or treated with antibiotics (WT, AB; KO, AB) (n = 3). Data are expressed as means ± SEM. *P < 0.05. (B) Western blot analysis of proteins of WAT of 10-week-old WT and KO mice. The blot was incubated with antibodies against C3 or enolase, as a loading control. Blot was developed as described in Materials and Methods.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5