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Abstract 

The nuclear heme receptor REV-ERB (a transcriptional repressor) is known to regulate CYP7A1 

and bile acid synthesis. However, the mechanism for REV-ERB regulation of CYP7A1 remains 

elusive. Here we investigate the role of LRH-1 in REV-ERB regulation of CYP7A1 and 

cholesterol metabolism. We first characterized the tertiary amine GSK2945 as a highly specific 

Rev-erb/REV-ERB antagonist using cell-based assays and confirmed expression of Rev-erb 

in mouse liver. GSK2945 treatment increased hepatic Cyp7a1 level and lowered plasma 

cholesterol in wild-type mice. Likewise, the compound increased the expression and microsomal 

activity of Cyp7a1 in hypercholesterolemic mice. This coincided with reduced plasma and liver 

cholesterol and enhanced production of bile acids. Increased levels of Cyp7a1/CYP7A1 were also 

found in mouse and human primary hepatocytes after GSK2945 treatment. In these experiments, 

we observed parallel increases in Lrh-1/LRH-1 (a known hepatic activator of Cyp7a1/CYP7A1) 

mRNA and protein. Luciferase reporter, mobility shift, and chromatin immunoprecipitation assays 

revealed that Lrh-1/LRH-1 was a direct Rev-erb/REV-ERB target gene. Furthermore, 

conditional deletion of Lrh-1 in the liver abrogated the regulatory effects of Rev-erb on Cyp7a1 

and cholesterol metabolism in mice. In conclusion, Rev-erb regulates CYP7A1 and cholesterol 

metabolism through its repression of Lrh-1 receptor. Targeting REV-ERB/Lrh-1 axis may 

represent a novel approach for management of cholesterol related diseases. 
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Introduction 

Cholesterol is a sterol molecule biosynthesized in animal cells. In addition to its 

importance for cell integrity, cholesterol also serves as a precursor for biosynthesis of 

hormones and bile acids. However, excessive cholesterol is a major risk factor for 

developing cardiovascular diseases (e.g., angina, heart attack, and stroke), a main cause 

of poor health and death (D'Agostino et al., 2008). Bile acid synthesis is the primary 

pathway for cholesterol catabolism. Cholesterol is converted into bile acids mainly 

through the multistep classic (or neutral) pathway, wherein cholesterol 7-hydroxylase 

(CYP7A1) is the first and rate-limiting enzyme (Ishibashi et al., 1996). A deficiency of 

CYP7A1 is associated with hypercholesterolemia, leading to cardiovascular and gallstone 

diseases (Pullinger et al., 2002). To maintain bile acid and cholesterol homeostasis, 

CYP7A1 is under the control of farnesoid X receptor (FXR) (Chiang et al., 2000). In 

excess, bile acids (e.g., cholic acid and chenodeoxycholic acid) activate FXR receptor to 

decease CYP7A1 expression via small heterodimer partner (SHP)-dependent and SHP-

independent mechanisms, thereby down-regulating their own biosynthesis (Inagaki et al., 

2005). In addition to FXR, many other transcription factors (e.g., LXR, LRH-1, E4BP4, 

HNF4, VDR, PPAR, DBP, DEC2, and REV-ERB) also participate in the regulation of 

CYP7A1 ( Noshiro et al., 2007; Chow et al., 2014). Of note, DBP, DEC2, and REV-ERB 

may contribute to circadian rhythm of CYP7A1 (Noshiro et al., 2007).  
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REV-ERB (NR1D1) and its paralog REV-ERB (NR1D2), the two members of 

nuclear receptor (NR) 1D subfamily, are important components of the mammalian clock 

machinery (Preitner et al., 2002; Cho et al., 2012). REV-ERBs were initially regarded as 

“orphan” NRs. They are no longer “orphan” receptors after heme was identified as their 

endogenous ligand (Raghuram et al., 2007; Yin et al., 2007). REV-ERBs serve as clock-

repressors that negatively regulate the expression of circadian and metabolic genes, 

thereby integrating circadian rhythms with cell metabolism (Everett and Lazar, 2014; 

Ercolani et al., 2015). The receptors bind to their specific response element (RevRE) 

(consisting of a NR half site “AGGTCA” and an A/T-rich 5' extension) and repress gene 

transcription by recruiting corepressor complex containing the core proteins nuclear 

receptor co-repressor 1 (NcoR) and histone deacetylase 3 (HDAC3) (Harding and Lazar, 

1995; Duez and Staels, 2009; Yin et al., 2010; Ercolani et al., 2015). REV-ERBs have 

been implicated in regulation of various physiological processes (e.g., cell differentiation, 

adipogenesis, inflammation, lipid and glucose metabolism), thus are regarded as potential 

therapeutic targets for cancers and metabolic disorders such as dyslipidemia, obesity, 

and diabetes (Duez and Staels, 2009; Yin et al., 2010; Ercolani et al., 2015).  

Although both REV-ERB paralogs are necessary in generation of circadian rhythms 

and in maintenance of metabolic homeostasis, REV-ERB appears to be of greater 

importance (Bugge et al., 2012; Cho et al., 2012). Rev-erb knockout in mice causes 

moderate disruptions to circadian rhythms and metabolic homeostasis, whereas loss of 
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Rev-erb shows no significant effects (Preitner et al., 2002; Bugge et al., 2012; Cho et 

al., 2012). The regulatory role of REV-ERB in hepatic lipid homeostasis has received 

considerable attentions (Duez and Staels, 2008). REV-ERB is shown to control the 

expression of the genes involved in lipid metabolism such as apoC-III and ELOVL3 

(Raspe et al., 2002; Anzulovich et al., 2006). REV-ERB also participates in regulation of 

bile acid synthesis as its absence leads to decreased bile acid accumulation in mice 

(Duez et al., 2008; Le Martelot et al., 2009). This regulation is attained through a 

modulatory effect of REV-ERB on CYP7A1 expression. However, the exact mechanisms 

for REV-ERB regulation of CYP7A1 remain elusive (Duez et al., 2008; Le Martelot et al., 

2009).  

Although REV-ERB is known to be involved in bile acid synthesis, little is known 

about its effects on cholesterol homeostasis. In addition, the ability of REV-ERB to be 

targeted by a drug is of great interest due to a critical role in circadian biology and cell 

metabolism (Solt et al., 2012; Trump et al., 2013). However, drug evaluation of synthetic 

ligands of REV-ERB is limited by poor pharmacokinetics or the lack of nuclear receptor 

selectivity (Trump et al., 2013; Ercolani et al., 2015). Therefore, the objectives of this study 

were to investigate the role of liver receptor homolog-1 (Lrh-1) in REV-ERB regulation 

of Cyp7a1 and to clarify the impact of REV-ERB on cholesterol metabolism using a 

small-molecule probe. We identified the tertiary amine GSK2945 as an in vivo functional 

probe (antagonist) of Rev-erb, and demonstrated that administration of GSK2945 to 
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mice led to induction of Cyp7a1 and reduction of cholesterol via upregulation of Lrh-1. 

Luciferase reporter, electrophoretic mobility shift (EMSA), and chromatin 

immunoprecipitation (ChIP) assays supported a direct role for Rev-erb/REV-ERB in 

repression of Lrh-1/LRH-1, thereby identifying the Rev-erb/Lrh-1 axis as a novel 

regulatory pathway for CYP7A1 expression and cholesterol homeostasis.  
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Materials and Methods 

The materials, primers, antibodies, plasmids, synthesis method for GSK2945, and procedures for 

pharmacokinetic studies are provided in the Supplementary Materials. 

Animal studies 

Male C57BL/6 mice were obtained from Beijing HFK Bioscience Co., Ltd. (Beijing, China).  

Mice were housed in a temperature-controlled room (22 ± 2 °C) on a standard 12/12 h 

light/dark cycle (07:00–19:00 h), with access to food and water ad libitum. In each set of 

studies, GSK2945 was administered intraperitoneally to mice at doses of 0 or 10 mg/kg 

twice every day (at ZT0 and ZT12) for 7 days. First, normal diet-fed mice (8-10 weeks of 

age, n = 5 per group) were treated with GSK2945, and blood and livers were harvested 

on day 8 at ZT0, ZT4, ZT8, ZT12, ZT16 and ZT20. In the second study, 

hypercholesterolemic mice fed a Western diet (1.25% cholesterol, Trophic Animal Feed 

High-tech Company, Jiangsu, China) for four weeks were developed. GSK2945 was 

given to both normal and hypercholesterolemic mice (10-12 weeks of age, n = 6 per 

group). On day 8 (ZT12), the blood and tissues (small intestine, gallbladder, and liver) 

were harvested. The feces were collected over a 48-hour period (from day 6 to day 8). All 

animal procedures were performed with isofloran anaesthesia and analgesia with 

buprenorphine prior to blood and tissues harvest. All the animal procedures were 

approved by the Institutional Animal Care and Use Committee of Jinan University and 
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conform to the NIH guidelines (Guide for the care and use of laboratory animals).  

Determination of bile acid pool size  

Bile acid pool was extracted following published procedures (Alnouti et al., 2008). 

Dehydrocholic acid was used as the internal standard. Samples were analyzed using the 

Waters Acquity UPLC/Synapt G2 QTOF with electrospray ionization (ESI) source at the 

negative ion mode. Chromatographic separation was performed on a Luna® Omega C18 

column (1.6 μm, 100 mm×2.1 mm, Phenomenex) at a flow rate of 0.3 ml/min. The mobile 

phases consisted of 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B). 

The gradient program was 25% B at 0-3 min, 25-35% B at 3-7 min, 35-40% B at 7-18 min, 

40-50% B at 18-23 min, 50-90% B at 23-25 min, 90% B at 25-28 min, 90-25% B at 28-30 

min. Calibration curves of reference standards were prepared to quantify the bile acids 

as described previously (Lee et al., 2008). 

Immunohistochemical staining 

Mouse livers were perfused with phosphate-buffered saline (PBS) and fixed overnight in 

4% paraformaldehyde at 4°C. Four-μm-thick paraffin-embedded sections were heated at 

65°C for 1 h, dewaxed in xylene and rehydrated in descending concentrations of ethanol. 

Antigen retrieval was achieved by boiling samples at 100°C in a citrate buffer solution (pH 

= 6.0) for 10 min. The sections were pre-blocked with 5% goat serum and incubated 

overnight with the primary anti-Rev-erb antibody (1:50, Sigma-Aldrich, MO, USA). After 
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washing with PBS, the sections were incubated with the secondary goat anti-mouse 

horseradish peroxidase antibody at room temperature for 1 h, followed by staining with 

diaminobenzidine tetrahydrochloride and counterstaining with hematoxylin. The sections 

were imaged with a Nikon Eclipse Ti-SR microscope (Nikon Incorporation, Tokyo, Japan). 

Mouse/human primary hepatocytes 

Mouse (male, CD1) and human (male, Caucasian) primary hepatocytes were obtained 

from XenoTech, LLC (Lenexa, KS) and plated in Biocoat™ collagen I 24-well plates 

(Corning, NY). After 8 h incubation at 37°C (for cell attachment), cells were overlaid with 

0.25 mg/ml Matrigel in OptiCulture Media. On the next day, cells were treated with vehicle 

(0.5% DMSO) or 20 µM GSK2945, and harvested at 3, 6, 12, or 24 h. 

Real-time PCR 

All primer sequences are summarized in Supplemental Table S1-2. Total RNA extraction 

and quantitative reverse transcriptase PCR were performed as previously described 

(Zhang et al., 2015). mRNA levels were first normalized to cyclophilin b or GAPDH, and 

then expressed as relative mRNA expression of the control.  

Western blotting 

Western blotting was performed as previously described (Song et al., 2008). Total 

proteins were separated on 10% sodium dodecyl sulfate-polyacrylamide gels, and 

transferred to polyvinylidenefluoride membranes. After probing with primary and 
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secondary antibodies, protein bands were visualized by enhanced chemiluminescence 

and analyzed by the Quantity One software. Protein levels were normalized to GAPDH 

or β-actin.  

Liver microsomal Cyp7a1 activity 

Mouse liver microsomes were prepared by sequential ultracentrifugation, first at 9,000 g 

for 10 min and then at 100,000 g for 60 min. The microsomal Cyp7a1 activity toward 

cholesterol was determined using the published procedures involving the oxidation of 7α-

hydroxycholesterol to 7α-hydroxy-4-cholesten-3-one by cholesterol oxidase (Chow et al., 

2009). 

Plasma and tissue cholesterol 

Total plasma cholesterol was measured using a LabAssay Cholesterol kit (Wako 

Chemical, Osaka, Japan). Total cholesterol was extracted from mouse livers as previously 

described (Patel et al., 2011), and quantified using a Total Cholesterol assay kit 

(Jiancheng Bioengineering Institute, Nanjing, China).  

Nuclear receptor (NR) specificity assay 

The potential of GSK2945 to modulate the activities of all 48 human NRs was assessed 

using a Gal4 cotransfection assay system as described (Kumar et al., 2010). In Gal4 

cotransfection assay, only specific ligand of test NR can bind to LBD to activate gene 

transcription. In brief, HEK293 cells were co-transfected with a GAL4-NR LBD construct, 
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pGL4.35[luc2P/9XGAL4UAS/Hygro] vector, and pRL-TK vector using the HET 

transfection kit (Biowit Technologies, Shenzhen, China). On the next day, GSK2945 (20 

μM) or DMSO was added and incubated with the cells for 24 h. The luciferase activities 

were measured with the Dual Luciferase Reporter Assay kit (Promega, Madison, WI) and 

Glomax 20/20 Luminometer (Promega, CA, USA). 

Luciferase reporter cotransfection assays 

Cotransfection assays were performed in HEK293 or HepG2 cells using the HET 

transfection kit (Biowit Technologies, Shenzhen, China) as described (Zhao et al., 2016). 

Ligands were added at 16 to 20 hours post transfection. Cells harvested 6 hours later 

were assayed for luciferase activities. The relative luciferase activity was initially derived 

as the ratio of firefly over renilla luciferase activity. The relative luciferase activity values 

of treated cells were normalized to that of control cells. 

Electrophoretic mobility shift assay (EMSA) 

After transfection of HEK293 cells with Rev-erbα/REV-ERBα, nuclear extracts were 

prepared using a cytoplasmic/nuclear protein extraction kit (Beyotime, Shanghai, China). 

EMSA assays were performed using a chemiluminescent EMSA kit (Beyotime). Six-g of 

nuclear extract was mixed in EMSA binding buffer. After 10-min preincubation on ice, 200-

fmol of biotin-labeled probe was added and incubated for 20-min at room temperature. 

Reaction products were subjected to 5% polyacrylamide gel electrophoresis. After 
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transferring to Hybond-N+ membrane (Amersham, Buckinghamshire, UK), the products 

were visualized by enhanced chemiluminesence reagent. All Oligonucleotide sequences 

for EMSA assays can be found in Supplemental Table S3. 

Chromatin immunoprecipitation (CHIP) assay 

ChIP assays were performed using a SimpleChIP® Enzymatic Chromatin IP Kit (Cell 

Signaling Technology, Beverly, MA) according to the manufacturer’s instructions. Mouse 

liver was fixed in 1% formaldehyde for 20 min at room temperature, followed by digestion 

with micrococcal nuclease and shearing with sonication. An aliquot of sheared chromatin 

was immunoprecipitated with anti-Rev-erb or normal rabbit IgG (control) by overnight 

incubation at 4°C. Immunoprecipitated chromatin was de-crosslinked at 65°C for 4 h and 

DNAs were purified using spin columns. The purified DNAs were used as a template for 

quantitative real-time PCR with specific primers (Supplemental Table S4).  

Statistical analysis 

All data are presented as mean ± SD (standard deviation). Statistical analysis on the 

circadian expression data was performed using a Student’s t-test comparing levels of 

gene/protein expression of vehicle treatment vs. drug treatment at individual circadian 

times. The Student’s t-test was also used to test for statistical differences between 

treatment and control groups. The level of significance was set at p < 0.05. 
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Results 

Rev-erb protein tissue distribution 

Nuclear Rev-erb protein was found at a similar level in mouse liver and ileum (Figure 

1A). The protein level of Rev-erb was 2.1-fold higher in the brain compared to the liver 

or ileum (Figure 1A). By contrast, Rev-erb protein was not detected in the kidney (Figure 

1A). The presence of Rev-erb protein within nuclei of mouse hepatocytes was further 

confirmed by liver immunostaining (Figure 1B).  

Identification of GSK2945 as a specific Rev-erb/REV-ERB antagonist 

GSK2945 (Figure 2A) was synthesized by reductive amination (Supplemental Materials), 

and its chemical structure was verified through 1H nuclear magnetic resonance (NMR), 

13C NMR, and mass spectrometric analyses (Supplemental Figure S1). The compound 

displayed a superior pharmacokinetic profile with much higher systemic and liver 

exposures compared to SR8278, the first synthetic antagonist of REV-ERBs 

(Supplemental Figure S2) (Kojetin et al., 2011). The activity of GSK2945 was first 

assessed in HEK293 cells co-expressing a chimaeric receptor [i.e., the DNA-binding 

domain (DBD) of Gal4 is fused to the ligand-binding domain (LBD) of Rev-erb/REV-ERB] 

and a Gal4-responsive luciferase reporter. In line with previous studies (Alnouti et al., 

2008; Solt et al., 2012), the agonist GSK4112 enhanced the transcriptional repression 

activities of Rev-erb/REV-ERB in the Gal4 chimaeric assay (Figure 2B). By contrast, 
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GSK2945 dose-dependently inhibited the repressor activities of Rev-erb/REV-ERB, 

but showed no effects on Rev-erb/REV-ERB activities (Figure 2B) (Rev-erb EC50 = 

21.5 M; REV-ERB EC50 = 20.8 M). The compound did not exhibit activities toward 

other types of nuclear receptors, demonstrating its exclusive action on REV-ERB 

receptor (Figure 2C). In addition, GSK2945 dose-dependently enhanced the 

transcriptional activity in a cotransfection assay using full-length Rev-erb and a Bmal1 

(a target gene of REV-ERBs) luciferase reporter (Figure 2D) (EC50 = 2.05 M). Also, the 

compound blocked the agonistic activity of GSK4112, resulting in induction of 

transcription at doses of 5 M (Figure 2D) (EC50 = 2.47 M). Furthermore, GSK2945 

increased the mRNA expression of BMAL1 and PEPCK (i.e., known target genes of REV-

ERBs) in HepG2 cells in a dose-dependent fashion (Figure 2E), a similar effect as observed 

when intracellular heme was reduced by succinylacetone (Supplemental Figure S3). Taken 

together, GSK2945 acted as an antagonist of Rev-erb/REV-ERB probably by blocking the 

action of endogenous heme. 

REV-ERB regulates hepatic Cyp7a1 and cholesterol homeostasis in normal diet-

fed mice 

The improved pharmacokinetic properties of GSK2945 allowed us to explore the 

functional effects of REV-ERB in vivo. No overt toxicity was observed in mice treated 

with GSK2945 based on hematology and liver function tests (Supplemental Figure S4 and 

Table S5). GSK2945 treatment of mice resulted in significant upregulation of hepatic 
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Cyp7a1, the key gene involved in cholesterol catabolism (Figure 3A). The protein level of 

Cyp7a1 was also elevated in response to GSK2945 administration (Figure 4A). This was 

accompanied by significant decreases in plasma and liver cholesterol (Figure 3B). Of 

Cyp7a1-regulatory transcriptional factors, Lrh-1 was unregulated at both mRNA and 

protein levels (Figures 3C & 4B). Although E4bp4 and Insig2 mRNAs were also increased, 

no significant differences were noted in their protein levels (Figures 3D & 4C). GSK2945 

treatment caused significant increases in mRNA and protein expression of Bmal1 and 

Pepck (two direct target genes of Rev-erb) consistent with Rev-erb antagonism (Figure 

3D and Supplemental Figure S5). Expression of the cholesterolgenic regulatory genes 

(Srebp2 and Hmgcr) were not altered by GSK2945 (Figure 3E). Of other cholesterol-

related genes, expression levels of Bsep and Abcg5/g8 (the target genes of Lrh-1) were 

also increased (Supplemental Figure S6). 

REV-ERB regulates Cyp7a1/CYP7A1 expression in mouse and human primary 

hepatocytes 

Impact of Rev-erb on Cyp7a1 and Lrh-1 was confirmed in isolated mouse primary 

hepatocytes. GSK2945 (20 M, a concentration close to the EC50 value) treatment of cells 

led to significant increases in mRNA and protein (at 24-h) expression of Cyp7a1 (Figure 

5A). Likewise, mRNA and protein (at 24-h) levels of CYP7A1 were increased in human 

primary hepatocyte after exposure to 20 M GSK2945 (Figure 5B). Of Cyp7a1/CYP7A1-

regulatory transcriptional factors, only Lrh-1/LRH-1 (a hepatic activator of 
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Cyp7a1/CYP7A1) was upregulated in response to GSK2945 treatment (Figure 5). These 

data supported a critical role for Lrh-1/LRH-1 in REV-ERB upregulation of 

Cyp7a1/CYP7A1. 

REV-ERB regulates cholesterol catabolism through upregulation of Cyp7a1 and 

Lrh-1 in hypercholesterolemic mice 

The effects of GSK2945 on Cyp7a1 and cholesterol metabolism were further evaluated 

using hypercholesterolemic mice which showed markedly increased liver and plasma 

cholesterol (Figure 6A). GSK2945 treatment of hypercholesterolemic mice led to 

significant reductions in plasma cholesterol (22.6%) and liver cholesterol (29.6%) (Figure 

6A). This was coincided with significantly increased Cyp7a1 mRNA (1.91-fold) and protein 

(1.52-fold) levels as well as microsomal activity (1.58-fold) in the liver (Figure 6B). 

Increased expression of Cyp7a1 may be accounted for by upregulation of Lrh-1 (Figure 

5C). Owing to upregulated Lrh-1, expression of Cyp8b1 was also increased 

(Supplemental Figure S7). In addition, both bile acid pool size and fecal excretion of bile 

acids were significantly increased after GSK2945 treatment (Figure 6D and Supplemental 

Figure S8-9). Likewise, there was a higher amount of bile acids in the plasma (Figure 6D). 

These data suggested an increased bile acid production because of enhanced Cyp7a1 

activity.  
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Rev-erb/REV-ERB is a transcriptional repressor of Lrh-1/LRH-1  

Luciferase reporter assays were performed to determine whether Cyp7a1 is directly 

regulated by Rev-erb. In line with the literature, Rev-erb and Rev-erb directly 

repressed Bmal1 transcription (Figure 7A). However, neither showed regulatory effects 

on Cyp7a1 transcription (Figure 7A). Consistently, transcription of Cyp7a1 was unaffected 

in the presence of GSK2945 (Figure 7A). Therefore, an indirect mechanism is necessary 

for regulation of Cyp7a1 by Rev-erb receptor as indicated previously (Duez et al., 2008; 

Le Martelot et al., 2009). We further performed luciferase reporter assays using proximal 

Lrh-1 promoter (-700/+3 bp). Rev-erb significantly decreased Lrh-1 promoter activity 

(Figure 7B). Addition of GSK2945 blocked the action of Rev-erb and eliminated its 

repressor activity (Figure 7B). These data revealed Rev-erb as a transcriptional 

repressor of Lrh-1. 

Sequence analysis of mouse Lrh-1 promoter suggested two potential Rev-erb 

response elements (mRevRE1 and mRevRE2) (at positions -647 and -167, respectively). 

Accordingly, multiple truncated and/or mutated versions of Lrh-1 luciferase reporters were 

generated and tested for repression activities (Figure 7C). The repressor ability of Rev-

erb was unaffected when mRevRE1 site was deleted or mutated, but completely lost 

when the mRevRE2 site was mutated (Figure 7C). This indicated that mRevRE2 rather 

than mRevRE1 was responsible for the repressor activity of Rev-erb. EMSA 
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experiments with biotinylated oligonucleotides showed that Rev-erb bound directly to 

the mRevRE2 site, forming a distinct DNA-protein complex (Figure 7D). Formation of this 

complex was markedly diminished in the presence of unlabeled competitor (Figure 7D). 

In a similar manner, a REV-ERB response element (at position -79) within the human 

LRH-1 promoter was identified (Figure 7E-F). To confirm the interaction of Rev-erb with 

Lrh-1 promoter in vivo, ChIP assays were performed using mouse liver samples at ZT8 

(corresponding to a peak Rev-erb expression). We observed significant recruitment of 

Rev-erb to the mRevRE2 site (Figure 7G). Overall, these data indicated that Rev-erb 

repressed transcription of Lrh-1 through its specific binding to the mRevRE2 site (i.e., the 

-178- to -167-bp region). 

Lrh-1 is required for regulation of Cyp7a1 by Rev-erb in vivo 

To determine whether Lrh-1 is an actual mediator for Rev-erb regulation of Cyp7a1, we 

performed in vivo studies using genetic mice. Conditional deletion of Lrh-1 in liver (Alb-

Cre;Lrhfl/fl) abrogated the changes in Cyp7a1 expression (Figure 8A) and plasma 

cholesterol (Figure 8B) as noted in wild-type mice, supporting a critical role for Lrh-1 in 

control of Cyp7a1 and cholesterol metabolism by Rev-erb.  
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Discussion 

In this study, we established the tertiary amine GSK2945 as an in vivo probe (antagonist) 

of Rev-erb and observed a cholesterol-lowering effect in mice after GSK2945 treatment. 

The cholesterol-lowing effect was associated with an elevation in expression of Cyp7a1 

(the rate-limiting enzyme in the classical pathway of bile acid synthesis), that led to 

increased production of bile acids (Figure 6D). The enhanced bile acid synthesis was 

primarily responsible for reduction in body cholesterol as no significant changes were 

found in cholesterolgenic genes Srebp2 and Hmgcr (Figure 3E). We further observed 

parallel expression changes in Lrh-1 (a positive regulator of Cyp7a1), thus predicted a 

critical role for Lrh-1 in upregulation of Cyp7a1. Through luciferase reporter, EMSA and 

ChIP assays, we revealed that Rev-erb directly repressed transcription of Lrh-1 via 

binding to its specific response element (Figure 7). Therefore, upregulation of Cyp7a1 by 

Rev-erb works through de-repression of Lrh-1 (Figure 8C). This is the first demonstration 

that Rev-erb can be targeted to alter Cyp7a1 expression and cholesterol homeostasis.  

Previous studies have consistently shown that Cyp7a1 and bile acid synthesis are 

under the control of Rev-erb using engineered mice with Rev-erb deletion or 

overexpression (Duez et al., 2008; Le Martelot et al., 2009). However, the exact 

mechanisms for this regulation remained unresolved. Duez et al believe that Rev-erb 

represses Shp and E4bp4 (two potential repressors of Cyp7a1) to increase Cyp7a1 in 
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mice (Duez et al., 2008). On the contrary, Le martelot et al propose that upregulation of 

Cyp7a1 by Rev-erb is through downregulation of Insig2 though the authors 

acknowledged the lack of direct evidence (Le Martelot et al., 2009). Repressive action of 

Rev-erb on Shp in vivo is questioned by our study and others (Le Martelot et al., 2009). 

This was because no change in Shp expression was observed in GSK2945-treated wild-

type mice (Figure 3C) or Rev-KO (Rev-erb knockout) mice, and increased expression 

of Shp was found in TgRev mice (i.e., Transgenic mice overexpressing hepatic Rev-erb) 

(Le Martelot et al., 2009). We and others also argue against a major role for E4bp4 in 

Cyp7a1 regulation (Le Martelot et al., 2009). First, E4bp4-/- mice did not show increased 

Cyp7a1 expression compared to wild-type mice (Le Martelot et al., 2009). Second, 

expression of E4bp4 was increased in wild-type mice in response to Rev-erb 

antagonism (Figure 3C). Further, we believed that Cyp7a1 upregulation was independent 

of Insig2 because expression of Insig2 was increased in GSK2945-treated mice (Figure 

3C).  

We propose that the Rev-erb/Lrh-1 axis is involved in regulation of Cyp7a1, 

highlighting Lrh-1 as a key mediator for indirect regulation of Cyp7a1 by Rev-erb. Small-

molecule targeting of Rev-erb de-represses Lrh-1, a hepatic activator of Cyp7a1 (Nitta 

et al., 1999; Noshiro et al., 2007; Out et al., 2011), to increase Cyp7a1 expression and 

lower cholesterol (Figure 8C). This novel mechanism of Cyp7a1 upregulation has greater 

potential utility in treating hypercholesterolemia compared with the VDR receptor 
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activation by 1,25(OH)2D3 (Chow et al., 2014). The latter is concerned with the 

hypercalcemic side effect of 1,25(OH)2D3.The proposed mechanism also helps to explain 

why Rev-erb activation by synthetic agonists (SR9009 and SR9011) results in a 

decrease in Cyp7a1 and why Rev-erb knockout leads to a reduction in liver cholesterol, 

which were unexpected previously due to proposed positive control of Cyp7a1 by Rev-

erb (Cho et al., 2012; Ercolani et al., 2015). We observed parallel increases in 

expression of other Lrh-1 target genes such as Cyp8b1, Cyp27a1, Bsep, and Abcg5/g8, 

supporting the upregulation of Lrh-1 in response to Rev-erb antagonism (Supplemental 

Figure S6-7) (Freeman et al., 2004; Lee et al., 2008; Song et al., 2008). Although Cyp8b1 

participates in classical bile acid synthesis, a contributing role of Cyp8b1 upregulation to 

reduced cholesterol can be ruled out because Cyp8b1-mediated reaction is not a limiting 

step to the overall bile acid synthesis (Li and Chang, 2014). On the other hand, the 

increase of Cyp27a1 might contribute to reduced cholesterol because the enzyme 

initiates the alternative (acidic) pathway of bile acid synthesis (Li and Chang, 2014). 

However, the contribution, if any, would be rather limited because the acidic pathway 

accounts for a minor portion (< 10%) of bile acid synthesis (Li and Chiang, 2014). 

We provided strong evidence that GSK2945 functions as an antagonist of Rev-erb. 

First, GSK2945 dose-dependently antagonizes the repressor action of Rev-erb in the 

chimaeric Gal4-LBD assay (Figure 2B). Second, GSK2945 de-represses the transcription 

of Bmal1 reporter and block the action of GSK4112 in a cotransfection assay with full-
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length Rev-erb (Figure 2D). Third, GSK2945 increases the expression of Rev-erb 

target genes in HepG2 and hepatocytes as well as in mice by antagonizing the action of 

endogenous heme (Figures 2-5). All these cell-based and in vivo data were consistent 

with the antagonism of Rev-erb. It was noted that GSK2945 behaved like a REV-ERB 

agonist in a previous study (Trump et al., 2013). The authors observed agonistic effects 

in non-standard activity assays (i.e., THP-1 interleukin 6 repression and U2OS reporter 

assays) (Trump et al., 2013). Although the exact reasons for this contradiction remained 

unknown, there was a possibility that the agonistic versus antagonistic action of GSK2945 

was cell type (tissue) -dependent. This is because the activity of REV-ERB receptor is 

strongly affected by the cellular microenvironments such as redox state, small molecule 

gasses (e.g., NO and CO) and the types of cofactors (Marvin et al., 2009; Pardee et al., 

2009; Trump et al., 2013; Matta-Camacho et al., 2014). Modifications of ligand-bound 

REV-ERB by redox conditions and gasses are likely the key determinants to ligand 

switching and functional effects (Kojetin et al., 2011). The high sensitivity of REV-ERB 

activity to the conformational changes of ligand-bound receptor complex is also 

evidenced by the fact that structurally related compounds [e.g., GSK2945 versus 

GSK4112; cobalt protoporphyrin IX versus heme] demonstrate different types of actions 

on REV-ERB (i.e., antagonist versus agonist) (Kojetin et al., 2011).  

In summary, we characterized GSK2945 as a Rev-erb antagonist with sufficient 

pharmacokinetic parameters for in vivo uses. GSK2945 increased the expression of 
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CYP7A1 and reduced total cholesterol in mice. This regulatory effect was ascribed to 

Rev-erb-mediated de-repression of Lrh-1, a hepatic activator of Cyp7a1. Therefore, 

targeting Rev-erb/Lrh-1 axis may represent a novel approach for management of 

cholesterol related diseases. 
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Legends for Figures 

Figure 1 Rev-erb (Nr1d1) protein tissue distribution. (A) Protein expression of 

Rev-erb in mouse liver (L), kidney (K), brain (Br) and ileum (I). HEK293 

cells transfected with pcDNA3.1 (-) and pcDNA3.1-Nr1d1 (+) are used as 

negative and positive controls, respectively. Data are presented as mean  

SD (n = 3).*p < 0.05 (t-test). N.D., not detected. (B) Liver immunostaining 

showing Rev-erb protein (arrows) within nuclei of mouse hepatocytes. 

Figure 2 Identification of GSK2945 as an antagonist of Rev-erb (Nr1d1)/REV-ERB 

(NR1D1). (A) Chemical structure of GSK2945. (B) Gal4 cotransfection assays 

with HEK293 cells demonstrating the antagonistic activity of GSK2945 versus 

agonistic activity of GSK4112 (also known as SR6452). (C) Nuclear receptor 

specificity assay illustrating a highly specific action of GSK2945 on REV-ERBα. The 

compound was tested at a concentration of 20 μM. The format of the assay was a 

cotransfection assay with a Gal4 DBD-nuclear receptor LBD fusion in HEK293 cells. 

(D) Cotransfection assays with full-length Rev-erb and a Bmal1 luciferase reporter 

in HEK293 cells demonstrating the antagonist activity of GSK2945. (E) Modulation 

of the expression of Rev-erb target genes by GSK2945 in HepG2 cells. 

Data are presented as mean ± SD (n = 3). *P < 0.05 (t-test) drug versus 

vehicle treatment. 

Figure 3 Rev-erb regulates the mRNA expression of cholesterol metabolism-

related genes in the liver. C57BL/6 mice were administered repeated 

doses of GSK2945 (10 mg/kg, i.p.) twice daily at ZT0 and ZT12 for 7 days 

and groups of mice (n = 5) were sacrificed and gene expression was 

assessed by qPCR. (A) Expression of Cyp7a1 in the livers of vehicle-treated 

versus GSK2945-treated mice. (B) Changes of blood and liver cholesterol 

in response to GSK2945 treatment. (C) Expression of Cyp7a1-regulatory 

transcriptional factors in the livers of vehicle-treated versus GSK2945-

treated mice. (D) Expression of Rev-erb target genes in the livers of 

vehicle-treated versus GSK2945-treated mice. (E) Expression of 

cholesterolgenic regulatory genes in the livers of vehicle-treated versus 

GSK2945-treated mice. Data are presented as mean  SD (n = 5). Statistical 

analysis on the circadian expression data was performed using a Student’s 

t-test comparing levels of gene/protein expression of vehicle treatment vs. 

drug treatment at individual circadian times. *P < 0.05. 

Figure 4 Rev-erb regulates the protein expression of cholesterol metabolism-

related genes in the liver. C57BL/6 mice were administered repeated doses 

of GSK2945 (10 mg/kg, i.p.) twice daily at ZT0 and ZT12 for seven days and 
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groups of mice (n = 5) were sacrificed and protein expression was assessed 

by Western blotting. (A) Expression of Cyp7a1 in the livers of vehicle-treated 

versus GSK2945-treated mice. (B) Expression of Lrh-1 in the livers of vehicle-

treated versus GSK2945-treated mice. (C) Expression of Cyp7a1-regulatory 

transcriptional factors in the livers of vehicle-treated versus GSK2945-treated 

mice. Data are presented as mean  SD (n = 5). Statistical analysis on the 

circadian expression data was performed using a Student’s t-test comparing 

levels of gene/protein expression of vehicle treatment vs. drug treatment at 

individual circadian times. *P < 0.05. 

Figure 5 GSK2945 changes Cyp7a1/CYP7A1 and Lrh-1/LRH-1 expression in 

mouse and human primary hepatocytes. (A) Mouse primary hepatocytes 

showed increased Cyp7a1 and Lrh-1 expression at 24-h after GSK2945 (20 

M) treatment. (B) Human primary hepatocytes showed increased Cyp7a1 

and Lrh-1 expression at 24-h after GSK2945 (20 M) treatment. *p < 0.05 (t-

test) drug versus vehicle treatment at different time points.  

Figure 6 GSK2945 reduces cholesterol and enhances bile acid production by 

upregulating hepatic Lrh-1 and Cyp7a1 in hypercholesterolemic mice. 

(A) Plasma and liver total cholesterol were reduced after GSK2945 treatment. 

(B) Hepatic Cyp7a1 expression and activity were increased after GSK2945 

treatment. (C) Hepatic Lrh-1 mRNA and protein levels were increased after 

GSK2945 treatment. (D) GSK2945 treatment increased bile acid pool size, 

plasma bile acid level, and fecal bile acid excretion. # p < 0.05 (t-test) Western 

diet versus normal diet; *p < 0.05 (t-test) vehicle-treated versus GSK2945-

treated hypercholesterolemic mice. 

Figure 7 Rev-erb/REV-ERB is a transcriptional repressor of Lrh-1/LRH-1. (A) 

Luciferase reporter assays driven by Bmal1 or Cyp7a1 promoter in HEK293 

and HepG2 cells, showing that Rev-erb failed to directly regulate Cyp7a1. 

*p<0.05 (t-test) Rev-erb plasmid treatment versus control. (B) Luciferase 

reporter assays driven by Lrh-1 promoter in HEK293 and HepG2 cells, 

showing Rev-erb directly repressed transcription of Lrh-1. *p<0.05 (t-test). 

(C) Luciferase reporter assays with truncated and/or mutated versions of 

mouse Lrh-1 promoter. The boxes denote potential RevRE sites, and 

represents the construct with RevRE site mutated (sequences shown). 

*p<0.05 (t-test) Rev-erb plasmid treatment versus control. (D) EMSA assay 

with biotin-labeled probes [Bmal1-RevRE probe (AAAGTAGGTTA) as 

control], showing Rev-erb bound to the mRevRE2 site of Lrh-1. (E) 

Luciferase reporter assays with truncated and/or mutated versions of human 

LRH-1 promoter. The boxes denote potential RevRE sites, and 

represents the construct with hRevRE site mutated (sequences shown). 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on December 13, 2017 as DOI: 10.1124/dmd.117.078105

 at A
SPE

T
 Journals on A

pril 18, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


 

DMD # 78105 

 35 

*p<0.05 (t-test) Rev-erb plasmid treatment versus control. (F) EMSA assay 

with biotin-labeled probes [BMAL1-RevRE probe as control], showing REV-

ERB bound to the hRevRE site of LRH-1. (G) ChIP assay with anti-Rev-

erb antibody (IgG as control) and mouse liver, showing Rev-erb bound to 

the mRevRE2 site of Lrh-1 in vivo. Data are repressed as mean  SD (n = 3). 

*p<0.05 (t-test). RLU, relative luciferase unit. 

Figure 8 Lrh-1 participates in Rev-erb regulation of Cyp7a1 and cholesterol 

homeostasis. (A) mRNA expression of Cyp7a1 and Lrh-1 in the livers of Alb-

Cre;Lrh-1fl/fl mice after vehicle- or GSK2945 treatment. (B) Effects of hepatic 

Lrh-1 deletion on plasma cholesterol in response to GSK2945 treatment. 

Data are presented as mean  SD (n = 5). *p<0.05 (t-test) drug versus vehicle 

treatment. (C) A schematic representation showing that Lrh-1 links Rev-erb 

to Cyp7a1 regulation and cholesterol metabolism. Rev-erb targeting by 

GSK2945 de-represses Lrh-1 to increase Cyp7a1 and enhance cholesterol 

catabolism, resulting in a reduced level of cholesterol in plasma and liver. 
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