Evaluation of alteration in hepatic and intestinal BCRP function in vivo due to ABCG2 c.421C>A polymorphism based on PBPK analysis of rosuvastatin

AZUSA FUTATSUGI, KOTA TOSHIMOTO, TAKASHI YOSHIKADO, YUICHI SUGIYAMA, and YUKIO KATO

Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry

Partnerships, RIKEN, Kanagawa (A.F., K.T., T.Y., Y.S.) and Faculty of Pharmacy,

Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University,

Running title:

ABCG2 polymorphism affects intestinal and hepatic BCRP activity

Correspondence to:

Yukio Kato, Ph. D.
Address: Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health
Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1102, Japan
Telephone: 81-76-234-4465, Facsimile: 81-76-234-4465
E-mail: ykato@p.kanazawa-u.ac.jp

Document statistics:

Number of text page: 42
Number of tables: 4
Number of figures: 2
Number of references: 55
Number of words in Abstract: 235
Number of words in Introduction: 750
Number of words in Discussion: 1496

Abstract

Abbreviations: ABCG2, ATP-binding cassette subfamily G2; AUC, area under the blood concentration-time curve; BCRP , breast cancer resistance protein; $\mathrm{CL}_{\mathrm{int}}$, intrinsic clearance; $\mathrm{F}_{\mathrm{a}} \mathrm{F}_{\mathrm{g}}$, fraction absorbed; $\mathrm{P}_{\mathrm{BCRP}}$, BCRP -mediated active transport in intestine; PBPK model, physiologically based pharmacokinetic model

Abstract

Polymorphism c. $421 \mathrm{C}>\mathrm{A}$ in $A B C G 2$ gene is thought to reduce the activity of breast cancer resistance protein (BCRP), a xenobiotic transporter, although it is not clear which organ(s) contributes to the polymorphism-associated pharmacokinetic change. The aim of the present study was to quantitatively estimate the influence of $\mathrm{c} .421 \mathrm{C}>\mathrm{A}$ on intestinal and hepatic BCRP activity, using a physiologically based pharmacokinetic (PBPK) model of rosuvastatin developed from clinical data and several in vitro studies. Simultaneous fitting of clinical data for orally and intravenously administered rosuvastatin, obtained in human subjects without genotype information was first performed with the PBPK model to estimate intrinsic clearance for hepatic elementary process. The fraction of BCRP activity in 421 CA and 421 AA (f_{ca} and $f_{a a}$ values, respectively) with respect to that in 421 CC subjects was then estimated based on extended clearance concepts and simultaneous fitting to oral administration data for the three genotypes ($421 \mathrm{CC}, 421 \mathrm{CA}$, and 421 AA). On the assumption that $\mathrm{c} .421 \mathrm{C}>\mathrm{A}$ affects both intestinal and hepatic BCRP, clinical data in each genotype were well reproduced by the model, and the estimated terminal half-life was compatible with the observed values. The assumption that $\mathrm{c} .421 \mathrm{C}>\mathrm{A}$ only affects either intestinal or hepatic BCRP gave poorer agreement with observed values. The $f_{a a}$ values obtained on the former assumption were $0.48-0.54$. Thus, PBPK model analysis enabled quantitative evaluation of alteration in BCRP activity due to $\mathrm{c} .421 \mathrm{C}>\mathrm{A}$, and BCRP activity in 421 AA was estimated as half that in 421 CC .

Introduction

ATP-binding cassette subfamily G2 (ABCG2) encodes breast cancer resistance protein (BCRP), which exports various types of xenobiotics and therapeutic agents by utilizing ATP hydrolysis as a driving force (Hirano et al., 2005; Mao and Unadkat, 2015). BCRP is expressed in various organs including small intestine, liver, kidney, and brain (Maliepaard et al., 2001). In humans, BCRP is considered to act as an efflux transport system in small intestinal epithelial cells, based largely on recent observations of pharmacokinetic changes of its substrate drugs due to either drug interaction-(Adkison et al., 2010; Kusuhara et al., 2012) or polymorphism of $A B C G 2$ gene (Gotanda et al., 2015; Urquhart et al., 2008; Yamasaki et al., 2008). The major polymorphism c.421C $>\mathrm{A}$ in ABCG2 gene, which leads Gln to Lys substitution at position $141(\mathrm{Q} 141 \mathrm{~K})$, is found in various populations (Ieiri, 2012; Tomita et al., 2013) and is associated with pharmacokinetic change of multiple therapeutic agents, including rosuvastatin (Keskitalo et al., 2009b; Wan et al., 2015). The polymorphism has also been reported to affect the pharmacodynamics of rosuvastatin (Bailey et al., 2010; Tomlinson et al., 2010), and the frequency of side effects after administration of other substrate drugs (Mizuno et al., 2012).

Polymorphism $\mathrm{c} .421 \mathrm{C}>\mathrm{A}$ is thought to alter the function and/or expression of

DMD \#78816
$A B C G 2$ gene product. For example, Imai et al. (2002) confirmed that c. $421 \mathrm{C}>\mathrm{A}$ decreases the BCRP protein expression level in ABCG2-overexpressing murine PA317 cells. The protein expression level of mutated BCRP was estimated to be $24-47 \%$ of that of wildtype BCRP in several cell lines (Kondo et al., 2004; Matsuo et al., 2009; Tamura et al., 2006). Gotanda et al. (2015) and Kobayashi et al. (2005) reported the protein expression level in vivo in human red blood cell and placental samples from homozygous subjects as 15% and 49%, respectively, compared with that in wild-type subjects. On the other hand, no effect of the polymorphism on BCRP activity was found in LLC-PK1 cells (Mizuarai et al., 2004) and human intestinal samples (Urquhart et al., 2008; Zamber et al., 2003). Thus, the effect of $\mathrm{c} .421 \mathrm{C}>\mathrm{A}$ polymorphism on BCRP activity remains controversial. Although the mechanisms involved are still unknown, it has been proposed that $\mathrm{c} .421 \mathrm{C}>\mathrm{A}$ may affect ATPase activity (Mizuarai et al., 2004; Morisaki et al., 2005), substrate specificity (Honjo et al., 2002), and proteasomal degradation (Kondo et al., 2004; Nakagawa et al., 2011), indicating that multiple factors are involved in the pharmacokinetic changes. Therefore, further analyses are needed to examine pharmacokinetic changes due to the $A B C G 2$ polymorphism in individual organs for each substrate drug. However, it is difficult to quantitatively estimate functional change in BCRP activity in vivo in humans.

DMD \#78816

Tanaka et al. (2015) estimated the BCRP activity in small intestine of $\mathrm{c} .421 \mathrm{C}>\mathrm{A}$ homozygous subjects as 23% of that in wild-type subjects by means of a mathematical model of intestinal absorption that they developed using the changes of AUC of rosuvastatin and six other drugs due to the polymorphism. They assumed that $\mathrm{c} .421 \mathrm{C}>\mathrm{A}$ polymorphism affects the activity of BCRP only in small intestine (Tanaka et al., 2015). Nevertheless, BCRP is also expressed on the canalicular membrane of hepatocytes (Maliepaard et al., 2001), and rosuvastatin is primarily taken up by hepatocytes after oral absorption, followed by excretion into the bile (Elsby et al., 2012) with minimal hepatic metabolism (Cooper et al., 2002; Martin et al., 2003b). Therefore, c.421C>A polymorphism of BCRP in the liver may also affect rosuvastatin pharmacokinetics.

The aim of the present study was to quantitatively estimate the change in the pharmacokinetics of rosuvastatin due to $A B C G 2$ gene polymorphism c. $421 \mathrm{C}>\mathrm{A}$ based on physiologically-based pharmacokinetic (PBPK) model analysis of previously reported clinical data. The advantages of PBPK models include incorporation of multiple pharmacokinetic processes, such as gastrointestinal absorption and hepatic disposition, into a single mathematical model that can quantitatively describe the change in each process due to various factors such as drug interaction and pharmacogenetic effects. Therefore, development of a PBPK model may be the best approach to examine the effect

DMD \#78816
of $\mathrm{c} .421 \mathrm{C}>$ A polymorphism on both intestinal and hepatic BCRP activities in humans. To quantitatively discriminate the effect of the polymorphism on the intestinal absorption and biliary excretion processes for rosuvastatin, we used the developed model to test three hypotheses in the present study: (\#1) c. $421 \mathrm{C}>\mathrm{A}$ only affects intestinal absorption of rosuvastatin, as proposed previously (Tanaka et al., 2015); (\#2) c.421C>A only affects biliary excretion of rosuvastatin; (\#3) c. $421 \mathrm{C}>\mathrm{A}$ affects both processes. By combining the PBPK model analysis with extended clearance concepts, we show that the third hypothesis provides the best fit to the observational data.

DMD \#78816

Materials and Methods

Construction of PBPK model

First, a PBPK model of rosuvastatin (Supplemental Fig. S1) was constructed.

The basic structure of PBPK model was originally constructed in the previous (Yoshikado et al., 2016), but was modified in the present study to include the stomach and three compartments of small intestine, in order to account for the delay in $\mathrm{T}_{\max }$ after oral administration. This PBPK model without the stomach compartment was most recently used in the analysis of rosuvastatin pharmacokinetics (Sugiyama et al., 2017). More complicated model may be needed to describe absorption process of rosuvastatin, but was not constructed in the present study, since only plasma concentration profile data were used in the following analyses. Mass-balance equations in the PBPK model were described in supporting information. Several hybrid parameters such as $\mathrm{CL}_{\text {int,all }}, \mathrm{f}_{\text {bile }}, \mathrm{R}_{\text {dif }}$, β, and γ were defined as follows (Yoshikado et al., 2016):

$$
\begin{align*}
& C L_{\text {int,all }}=P S_{\text {inf }} * \beta=P S_{\text {inf }} * \frac{C L_{\text {int,met }}+C L_{\text {int,bile }}}{P S_{\text {dif, }, \text { eff }}+C L_{\text {int,met }}+C L_{\text {int,bile }}} \tag{1}\\
& f_{\text {bile }}=\frac{C L_{\text {int,bile }}}{C L_{\text {int }}}=\frac{C L_{\text {int,bile }}}{C L_{\text {int,met }}+C L_{\text {int,bile }}} \tag{2}\\
& R_{\text {dif }}=\frac{P S_{\text {dif,inf }}}{P S_{\text {act }}} \tag{3}\\
& \beta=\frac{C L_{\text {int }}}{P S_{\text {eff }}+C L_{\text {int }}}=\frac{C L_{\text {int,met }}+C L_{\text {int,bile }}}{P S_{\text {dif,eff }}+C L_{\text {int,met }}+C L_{\text {int,bile }}} \tag{4}\\
& \gamma=\frac{P S_{\text {dif }, \text { inf }}}{P S_{\text {dif,eff }}} \tag{5}
\end{align*}
$$

DMD \#78816
where $\mathrm{PS}_{\text {inf }}$ is hepatic uptake intrinsic clearance $\left(=\mathrm{PS}_{\text {act }}+\mathrm{PS}_{\text {difi,inf }}\right), \mathrm{PS}_{\text {act }}$ is active uptake intrinsic clearance on sinusoidal membrane, $\mathrm{PS}_{\text {difi,inf }}$ is influx intrinsic clearance by passive diffusion through sinusoidal membrane, $\mathrm{PS}_{\text {dife,ff }}$ is efflux intrinsic clearance by passive diffusion through sinusoidal membrane, $\mathrm{CL}_{\text {int,met }}$ is hepatic intrinsic clearance of metabolism, and $\mathrm{CL}_{\text {int,bile }}$ is hepatic intrinsic clearance of biliary excretion. In the present study, transporter-mediated basolateral efflux was not considered due to limited evidence of its importance in humans despite the previous reports in rats (Pfeifer et al. 2013). The following equations including the above hybrid parameters were also used to perform the fitting in Step 1:

$$
\begin{align*}
& P S_{\text {act }}=\frac{C L_{\text {int,all }}}{\beta *\left(1+R_{\text {dif }}\right)} \tag{6}\\
& P S_{\text {dif,inf }}=\frac{R_{\text {dif }} * C L_{\text {int }, \text { all }}}{\beta *\left(1+R_{\text {dif }}\right)} \tag{7}\\
& P S_{\text {dif }, \text { eff }}=P S_{\text {eff }}=\frac{R_{\text {dif }} * C L_{\text {int,all }}}{\beta * \gamma *\left(1+R_{\text {dif }}\right)} \tag{8}\\
& f_{\text {bile }}=1-\frac{1-\beta}{\beta * P S_{\text {dif,eff }}} * C L_{\text {int,met }} \tag{9}\\
& C L_{\text {int }}=\frac{R_{\text {dif }} * C L_{\text {int }, \text { all }}}{\gamma *(1-\beta) *\left(1+R_{\text {dif }}\right)} \tag{10}\\
& C L_{\text {int,bile }}=f_{\text {bile }} * C L_{\text {int }} \tag{11}
\end{align*}
$$

where $\mathrm{CL}_{\text {int }}$ is the hepatic intrinsic clearance $\left(=\mathrm{CL}_{\text {int,bile }}+\mathrm{CL}_{\text {int,met }}\right)$. Several parameters were fixed to literature values (Table 1A, Supplemental Table S1) (Davies and Morris, 1993; Kato et al., 2003; Kawai et al., 1998; Martin et al., 2003a; Rodgers and Rowland,

DMD \#78816

2006; Watanabe et al., 2010; Watanabe et al., 2011). $\mathrm{CL}_{\text {int,met }}$ and f_{h} (unbound fraction in the liver) were fixed to values obtained from in-house metabolic studies using human liver microsomes and uptake studies using suspended human hepatocytes, respectively (Yoshikado et al., 2016) (Table 1A), whereas γ was obtained using the ratio of influx intrinsic clearance by passive diffusion of ionized form to that of unionized form, which was assumed to be the same as that in Caco-2 cells (see Supplemental Information), although such extrapolation may need to be validated by further analyses. The β value was fixed to $0.2,0.31$, or 0.5 (0.31 was the value determined from uptake studies using sandwich-cultured human hepatocytes) (Table 1A) throughout the present analysis since this value cannot be finalized by the present study. The following equation represents the relationship among k_{a} (absorption rate constant), k_{f} (fecal rate constant), and $\mathrm{F}_{\mathrm{a}} \mathrm{Fg}_{\mathrm{g}}$ in this PBPK model (Supplemental Fig. S1):

$$
\begin{equation*}
1-F_{a} F_{g}=\left(\frac{k_{f}}{k_{a}+k_{f}}\right)^{3} \tag{12}
\end{equation*}
$$

In the present study, k_{f} value was calculated from k_{a} and $\mathrm{F}_{\mathrm{a}} \mathrm{F}_{\mathrm{g}}$ according to Eq. 12 .

Estimation of parameters in mixed population (Step 1)

The analysis in the present study is schematically illustrated in Supplemental Fig.

S2. In the Step $1, \mathrm{k}_{\mathrm{a}}, \mathrm{k}_{\text {stomach }}$ (transit rate constant from stomach to GI tract), $\mathrm{R}_{\text {dif }}, \mathrm{k}_{\text {bile }}$

DMD \#78816
(transit rate constant from bile compartment to GI tract), and $\mathrm{CL}_{\text {int,all }}$ were directly estimated by simultaneous fitting to the PBPK model (Fig. S1) of clinical data for orally (p.o.) and intravenously (i.v.) administered rosuvastatin, obtained in mixed Caucasian subjects without genotype information (Martin et al., 2003a). In this fitting, the initial value of $\mathrm{R}_{\text {dif }}$ was set to that obtained from uptake studies with suspended human hepatocytes, and the range of $\mathrm{R}_{\text {dif }}$ was set as within the highest and lowest values obtained in the experiments (Table 1B). The initial value of $\mathrm{CL}_{\text {int,all }}$ was obtained from literature information, including i.v. data of rosuvastatin (Martin et al., 2003a). Four parameters of hepatic elementary process $\left(\mathrm{CL}_{\text {int,bile }}, \mathrm{PS}_{\text {act }}, \mathrm{PS}_{\text {dif,eff, }}\right.$, and $\left.\mathrm{PS}_{\text {difi,inf }}\right)$ were not directly estimated by the fitting, but finally calculated according to Eqs. 6-11, using the fixed and estimated parameters after the fitting (Fig. S2). In addition, $\mathrm{P}_{\mathrm{BCRP}}$, which represents the permeability of active transport in the intestine, was defined and calculated from $\mathrm{F}_{\mathrm{a}} \mathrm{F}_{\mathrm{g}}$ according to the intestinal absorption model previously reported (Ito et al., 1999), as follows:

$$
\begin{equation*}
F_{a} F_{g}=1-\exp \left\{-\frac{P_{\text {dif }} * A_{r}}{L F / S} \frac{P_{\text {dif }}}{\left(P_{\text {dif }}+P_{B C R P}\right) * A_{r}+P_{\text {dif }}}\right\} \tag{13}
\end{equation*}
$$

where $\mathrm{P}_{\text {dif }}, \mathrm{A}_{\mathrm{r}}$, and LF/S represent permeability of passive diffusion $\left(2.6 \times 10^{-5} \mathrm{~cm} / \mathrm{s}\right.$;

Tanaka et al., 2015; Winiwarter et al., 1998), area ratio between apical side and basolateral side (20; DeSesso and Jacobson, 2001), and luminal flow rate divided by the basal surface

DMD \#78816
area $\left(1.7 \times 10^{-5} \mathrm{~cm} / \mathrm{s}\right.$; Tanaka et al., 2015), respectively. The $\mathrm{F}_{\mathrm{a}} \mathrm{F}_{\mathrm{g}}$ value used for the calculation of $\mathrm{P}_{\mathrm{BCRP}}$ was shown in Table 1 A . Both $\mathrm{CL}_{\text {int,bile }}$ and $\mathrm{P}_{\text {BCRP }}$ were defined to represent transporter-mediated permeability on canalicular and apical membranes of liver and small intestine, respectively, and can be affected by change of BCRP activity due to ABCG2 gene polymorphism.

Calculation of kinetic parameters associated with BCRP activity for each ABCG2

genotype based on extended clearance concepts (Step 2)

The $\mathrm{CL}_{\text {int,bile }}$ and $\mathrm{P}_{\mathrm{BCRP}}$ values in each of the three $A B C G 2$ genotypes (421CC,

421 CA , and 421 AA) were separately estimated by assuming that these two parameters are primarily governed by BCRP activity. First, $f_{c a}$ and $f_{a a}$ were defined as the fractions of transporter-mediated permeability on canalicular and apical membranes of liver and small intestine in 421CA and 421AA, respectively, relative to that in 421CC (wild-type). Therefore, the $\mathrm{CL}_{\text {int,bile }}$ and $\mathrm{P}_{\mathrm{BCRP}}$ values in 421 CA can be written as $\mathrm{f}_{\mathrm{ca}} \cdot \mathrm{CL}_{\text {int,bile,cc }}$ and $f_{c a} \cdot P_{B C R P, c c}$, respectively, where $C L_{\text {int,bile,cc }}$ and $P_{B C R P, c c}$ represent the $C L_{\text {int,bile }}$ and $P_{B C R P}$ values in 421 CC subjects, respectively. Then, the following equations can be derived from

Eq. 15 for each genotype:

$$
\begin{equation*}
F_{a} F_{g, c a}=1-\exp \left\{-\frac{P_{d i i} * A_{r}}{L F / S} \frac{P_{\text {dif }}}{\left(P_{\text {dif }}+f_{c a} * P_{B C R P, c c}\right) * A_{r}+P_{d i f}}\right\} \tag{14}
\end{equation*}
$$

DMD \#78816

$$
\begin{equation*}
F_{a} F_{g, a a}=1-\exp \left\{-\frac{P_{d i f} * A_{r}}{L F / S} \frac{P_{d i f}}{\left(P_{d i f}+f_{a a} * P_{B C R P, c c}\right) * A_{r}+P_{d i f}}\right\} \tag{15}
\end{equation*}
$$

Similarly, according to Eqs. 1 and 2, the $\mathrm{CL}_{\text {int, all }}$ and $\mathrm{f}_{\text {bile }}$ values in 421 CA and 421AA can be written as:

$$
\begin{align*}
& C L_{\text {int,all,ca }}=P S_{\text {inf }} * \frac{C L_{\text {int,met }}+f_{c a} * C L_{\text {int,bile,cc }}}{C L_{\text {int,met }}+f_{c a} * C L_{\text {int,bile,cc }}+P S_{e f f}} \tag{16}\\
& C L_{\text {int,all,aa }}=P S_{\text {inf }} * \frac{C L_{\text {int,met }}+f_{\text {aa }} * C L_{\text {int,bile,cc }}}{C C L_{\text {int,met }, t}+f_{a a} * C L_{\text {int,bile,cc }}+P S_{e f f}} \tag{17}\\
& f_{\text {bile,ca }}=\frac{f_{c a} * C L_{\text {int,bile, }, c c}}{C L_{\text {int, }, \text { et }}+f_{c a} * C L_{\text {int,bile,cc }}} \tag{18}\\
& f_{\text {bile,aa }}=\frac{f_{a a} * C L_{\text {int,bile,cc }}}{C L_{\text {int,met }}+f_{\text {aa }} * C L_{\text {int,bile,cc }}} \tag{19}
\end{align*}
$$

where $C L_{\text {int,all,cc }}$ and $f_{\text {bile,cc }}$ represent $C L_{\text {int,all }}$ and $f_{\text {bile }}$ values in $421 C C$ subjects, respectively. Based on Eqs. 13-19, the ratios of AUC in 421CA ($\mathrm{AUC}_{\mathrm{CA}}$) and 421AA $\left(\mathrm{AUC}_{\mathrm{AA}}\right)$ to that in $421 \mathrm{CC}\left(\mathrm{AUC}_{\mathrm{CC}}\right)$, and the $\mathrm{CL}_{\text {int,bile }}$ and $\mathrm{P}_{\mathrm{BCRP}}$ values in mixed Caucasian subjects ($\mathrm{CL}_{\text {int,bile,mix }}$ and $\mathrm{P}_{\mathrm{BCRP}, \text { mix }}$, respectively) can be written as:

$$
\begin{align*}
& \frac{A U C_{C A}}{A U C_{C C}}=\frac{\frac{F_{a} F_{g, c a} * \text { Dose }_{p o}}{C L_{r}+\left(1-F_{a} F_{g, c a} * f_{\text {bile }, c a}\right)\left\{\left(\frac{\left.\left.Q_{h}+\frac{f_{b} * C L_{\text {int }, \text { all }, c a}}{N}\right)^{N}-1\right\}\left(Q_{h}+C L_{r}\right)}{Q_{h}}\right.\right.} \frac{F_{a} F_{g, c c} * \text { Dose }_{p o}}{C L_{r}+\left(1-F_{a} F_{g, c c} * f_{\text {bile }, c c}\right)\left\{\left(\frac{Q_{h}+\frac{f_{b} * C L_{\text {int }, a l l, c c}}{N}}{Q_{h}}\right)^{N}-1\right\}\left(Q_{h}+C L_{r}\right)}}{} \tag{20}\\
& \frac{A U C_{A A}}{A U C_{C C}}=\frac{\frac{F_{a} F_{g, a a} * \text { Dose }_{p o}}{C L_{r}+\left(1-F_{a} F_{g, a a} * f_{\text {bile }, a a}\right)\left\{\left(\frac{Q_{h}+\frac{f_{b} * C L_{i n t, a l l, a a}}{N}}{Q_{h}}\right)^{N}-1\right\}\left(Q_{h}+C L_{r}\right)}}{C L_{r}+\left(1-F_{a} F_{g, c c} * f_{\text {bile }, c c}\right)\left\{\left(\frac{Q_{h}+\frac{f_{b} * C L_{i n t, a l l, c c}}{N}}{Q_{h}}\right)^{N}-1\right\}\left(Q_{h}+C L_{r}\right)} \tag{21}\\
& C L_{i n t, b i l e, m i x}=C L_{i n t, b i l e, c c} * \text { Freq }_{c c}+f_{c a} * C L_{i n t, b i l e, c c} * \text { Freq }_{c a}+f_{\text {aa }} * C L_{i n t, b i l e, c c} * F r e q_{a a} \tag{22}
\end{align*}
$$

$$
\begin{equation*}
P_{B C R P, m i x}=P_{B C R P, c c} * \text { Freq }_{c c}+f_{c a} * P_{B C R P, c c} * \text { Freq }_{c a}+f_{a a} * P_{B C R P, c c} * \text { Freq }_{a a} \tag{23}
\end{equation*}
$$

where N represents the number of liver compartments (five) in the PBPK model (Supplemental Fig. S1). Freq ${ }_{c c}$, Freq $_{\mathrm{ca}}$, and $\mathrm{Freq}_{\mathrm{aa}}$ are the allele frequencies of 421 CC , 421CA, and 421AA subjects among Caucasians, respectively. These Freq values should be those found in the original data source in Step 1, but no genotype information is available (Martin et al., 2003a). Therefore, these Freq $_{\mathrm{cc}}$, Freq $_{\mathrm{ca}}$, and Freq $_{\text {aa }}$ were fixed to previously reported values ($0.740,0.241$, and 0.0196 , respectively; Tomita et al., 2003). Eqs. 20 and 21 were obtained by integration from 0 to ∞ of all the differential equation in the PBPK model including enterohepatic circulation (Eqs. 1-24 in Supplemental Information). Eqs. 20-23 were used as simultaneous equations to estimate $\mathrm{CL}_{\text {int,bile,cc }}$, $P_{\text {BCRP,cc }}, f_{c a}$, and $f_{\text {aa. }}$. These simultaneous equations were solved by the Excel solver (version 2016) for three different assumptions: c. $421 \mathrm{C}>\mathrm{A}$ polymorphism only affects intestinal BCRP (Assumption \#1), c. $421 \mathrm{C}>$ A polymorphism only affects hepatic BCRP (Assumption \#2), and c. $421 \mathrm{C}>$ A polymorphism affects both intestinal and hepatic BCRP (Assumption \#3). Under assumption \#1, all of $\mathrm{CL}_{\text {int,bile,cc, }}, \mathrm{CL}_{\text {int,bile,ca }}$, and $\mathrm{CL}_{\text {int,bile,aa }}$ were fixed to $\mathrm{CL}_{\text {int,bile,mix }}$, and Eqs. 20, 21, and 23 were solved as simultaneous equations. Under assumption \#2, on the other hand, all of $\mathrm{P}_{\mathrm{BCRP}, \mathrm{cc}}, \mathrm{P}_{\mathrm{BCRP}, \mathrm{ca}}$, and $\mathrm{P}_{\mathrm{BCRP}, \mathrm{aa}}$ were fixed to $P_{\text {BCRP,mix }}$, and Eqs. 20-23 were simultaneously solved. All the four equations (Eqs. 20-

DMD \#78816
23) were simultaneously solved under assumption \#3. The ratios of AUC in Eqs. 20 and 21 were taken from previously reported clinical data (Keskitalo et al., 2009b; Supplemental Table S2), whereas both $\mathrm{CL}_{\text {int,bile,mix }}$ and $\mathrm{P}_{\mathrm{BCRP}, \text { mix }}$ in Eqs. 22 and 23 were fixed to those obtained in Step 1 as $C_{\text {int,bile }}$ and $P_{B C R P}$, respectively. The $\mathrm{F}_{\mathrm{a}} \mathrm{Fg}_{\mathrm{g}}$ values in each genotype-were also calculated under these three assumptions by using Eqs. 13-15.

Simultaneous PBPK model fitting of blood concentration-time profiles in 421CC,

421CA and 421AA subjects (Step 3)

The blood concentration-time profiles of rosuvastatin after oral administration in 421CC, 421CA, and 421AA subjects were taken from the previous paper (Keskitalo et al., 2009b), and simultaneous fitting to the PBPK model was further performed to directly estimate $\mathrm{CL}_{\text {int,bile,cc, }}, \mathrm{P}_{\mathrm{BCRP}, \mathrm{cc}}, \mathrm{f}_{\mathrm{ca}}, \mathrm{f}_{\mathrm{aa}}, \mathrm{k}_{\text {bile }}, \mathrm{k}_{\mathrm{f}}$ (fecal rate constant), and $\mathrm{R}_{\text {dif }}$ values under the three assumptions (\#1, \#2, and \#3; Supplemental Fig. S2). Other parameters were fixed to the values (Supplemental Table S3A), which were also used or estimated in Step 1 and 2 (Table 1). The initial values of $\mathrm{CL}_{\text {int,bile,cc, }} \mathrm{P}_{\mathrm{BCRP}, \mathrm{cc}}, \mathrm{f}_{\mathrm{ca}}$, and $\mathrm{f}_{\text {aa }}$ were set to be those estimated in Step 2, whereas initial values of $\mathrm{k}_{\text {bile }}$ and k_{f} were set to be those estimated in Step 1. The lower and upper limits of these six free parameters were set to be $1 / 3$ - and 3 -fold of the initial values, respectively. The initial value and range of $\mathrm{R}_{\text {dif }}$ were set to be the same

DMD \#78816
as those in Step 1. The $\mathrm{F}_{\mathrm{a}} \mathrm{Fg}_{\mathrm{g}}$ value in each genotype was calculated by Eqs. 14 and 15, whereas the $\mathrm{CL}_{\text {int,bile }}$ values in 421CA and 421AA were calculated as $\mathrm{f}_{\mathrm{ca}} \cdot \mathrm{CL}_{\text {int,bile,cc }}$ and $\mathrm{f}_{\text {aa }} \cdot \mathrm{CL}_{\text {int,bile,cc }}$, respectively. AUC was obtained based on moment analysis, and $\mathrm{t}_{1 / 2}$ was calculated using three points $(24,34$, and 48 h$)$ of terminal phase of fitted data.

Results

Estimation of pharmacokinetic parameters in mixed Caucasian subjects (Step 1)

The estimated parameters in this step were listed in Table 1B. Due to difficulty in optimization of β values, the fitting was performed with three different fixed β values ($0.2,0.31$, or 0.5). As shown in Fig. 1, clinical data in mixed Caucasian subjects reported by Martin et al. (2003a) were reproduced by the fitted lines, supporting the validity of the PBPK model constructed in this step. The fitted lines obtained at any β value examined can almost well explain the observed data (Fig. 1). Among the five parameters directly estimated by the fitting, the $\mathrm{R}_{\text {dif }}$ values reached the lower limit of the initial range, whereas the $S D$ values of $\mathrm{k}_{\text {bile }}$ were higher than the mean values (Table 1B), suggesting relatively lower reliability of these parameters. After the fitting, four hepatic intrinsic clearances $\left(\mathrm{CL}_{\text {int,bile }}, \mathrm{PS}_{\text {act }}, \mathrm{PS}_{\text {dif,eff, }}\right.$, and $\left.\mathrm{PS}_{\text {dif,inf }}\right)$ were calculated at the three β values (Table 1C). As the fixed β value was increased, basolateral membrane parameters $\left(\mathrm{PS}_{\text {act }}\right.$,

DMD \#78816
$\mathrm{PS}_{\text {difieff, }}$, and $\mathrm{PS}_{\text {difinf }}$) were decreased, whereas the canalicular membrane parameter ($\mathrm{CL}_{\text {int,bile }}$) was increased (Table 1C). $\mathrm{P}_{\text {BCRP }}$ calculated according to Eq. 15 was 4.37×10^{-5} cm / s. A

Calculation of parameters associated with BCRP activity in $421 \mathrm{CC}, 421 \mathrm{CA}$, and

 421AA subjects ($\mathrm{CL}_{\mathrm{in}, \text { bile,cc }}, \mathrm{P}_{\mathrm{BCRP}, \mathrm{cc}}, f_{\mathrm{ca}}$, and $\mathrm{f}_{\text {aa }}$) based on the extended clearance concept (Step 2)The CLint,bile,cc $, \mathrm{P}_{\text {BCRP,cc }}, \mathrm{f}_{\text {ca }}$, and $f_{\text {aa }}$ values (Table 2A) were calculated based on the three different assumptions. The estimated $\mathrm{CL}_{\text {int,bile,cc }}$ values were $15.4-26.6,16.4-$ 29.0, and 16.0-27.6 under assumptions \#1, \#2, and \#3, respectively, and the estimated $\mathrm{P}_{\text {BCRP,cc }}$ values were $4.72-4.73 \times 10^{-5}, 4.37 \times 10^{-5}$, and $4.54-4.55 \times 10^{-5}$, respectively (Table 2A). The estimated f_{aa} values under assumption \#1 were 0.174-0.194 (Table 2A), which are close to that in a previous report (0.23 ; Tanaka et al., 2015), in which it was similarly assumed that $\mathrm{c} .421 \mathrm{C}>\mathrm{A}$ polymorphism only affects intestinal BCRP. Moreover, the $f_{a a}$ values were $0.208-0.286$ and $0.479-0.529$ under assumptions \#2 and \#3, respectively (Table 2A). Thus, to match the clinically observed AUC ratio in Caucasian subjects ($\mathrm{AUC}_{\mathrm{AA}} / \mathrm{AUC}_{\mathrm{CC}}=2.44$; Supplemental Table S 2), a higher degree of variability of BCRP activity (i.e., lower value of $f_{a a}$) is needed when it is assumed that only one organ

DMD \#78816
(small intestine or liver) is responsible for the pharmacokinetic change due to the $A B C G 2$ polymorphism (Assumptions \#1 and \#2).

Simultaneous PBPK model fitting of blood concentration-time profiles in 421CC,

421CA and 421AA subjects (Step 3)

PBPK model including the parameters obtained in Step 2 cannot fully explain the observed blood concentration-time profiles in each genotype (Supplemental Fig. S3) probably because the parameters obtained in Step 2 (Table 2A) only considered the reported ratio of AUC within each genotype. Therefore, simultaneous fitting to the PBPK model of blood concentration-time profiles in all the genotypes was next performed with the aim of fully explaining these profiles and evaluating the validity of assumptions \#1, \#2, and \#3. Although minimal effect of Bcrp knockout on intravenous administration profile of rosuvastatin was reported in rodents (Karibe et al., 2015), no intravenous data were available in all the three genotypes in humans. Therefore, this simultaneous fitting was performed only for oral administration data. The BCRP-associated kinetic parameters and others directly obtained by this fitting are shown in Table 2B and S3B-D, respectively. $\mathrm{P}_{\mathrm{BCRP}, \mathrm{cc}}$ under assumption \#1 and $\mathrm{CL}_{\text {int,bile,cc }}$ under assumption \#2 (Table 2B) were three times higher than those obtained based on extended clearance concepts (Table

DMD \#78816

2A) and are reached to their upper limits. On the other hand, no parameter reached the upper or lower limits under assumption \#3 (Table 2B). The SD values of most of the parameters directly obtained by the fitting, except those of $\mathrm{CL}_{\text {int,bile,cc }}$ values under assumption \#1, were lower than the mean values (Table 2B). The optimized $f_{a a}$ values under assumption \#1 were 0.373-0.377 (Table 2B) and higher than those estimated in Step 2 (Table 2A), whereas the optimized $f_{\text {aa }}$ values under assumptions \#2 and \#3 were 0.1860.284 and $0.478-0.539$, respectively (Table 2B), and comparable with those estimated in Step 2 (Table 2A). As shown in Fig. 2, $\mathrm{C}_{\text {max }}$ of $\mathrm{c} .421 \mathrm{C}>\mathrm{A}$ variants was not well reproduced under assumptions \#1. The obtained WSS and AIC values shown in Table 3 were the lowest under assumption \#3, compared with other two assumptions. The AUC and $\mathrm{t}_{1 / 2}$ values in each genotype were calculated based on the PBPK model in Step 3 (Table 4). Clinically observed AUC ratios in 421 CA and 421 AA to 421 CC were 1.22 and 2.44 in Caucasian subjects (Keskitalo et al., 2009b; Supplemental Table S2), respectively, and similar AUC ratios were obtained by simulation under all the assumptions (Table 4). The $t_{1 / 2}$ in 421AA was higher than that in $421 C C$ under assumptions $\# 1$; the $t_{1 / 2}$ in 421AA was almost the same as that in 421 CC under assumption \#2 and \#3 (Table 4), whereas clinically observed $t_{1 / 2}$ in 421AA was almost the same as that in 421CC (Supplemental Table S2).

DMD \#78816

Discussion

Rosuvastatin is one of the best available clinical substrates for hepatic and/or intestinal BCRP (Lee et al. 2015). In the present study, the $f_{c a}$ and $f_{a a}$ values were defined to represent possible change in BCRP activity due to $A B C G 2$ gene polymorphism. The $f_{\text {aa }}$ values estimated based on extended clearance concepts using AUC ratio for each polymorphism (Step 2) were $0.17-0.19,0.21-0.29$ and $0.48-0.53$ on the assumptions that the polymorphism affects only intestinal BCRP (\#1), only hepatic BCRP (\#2) and both intestinal and hepatic BCRP (\#3), respectively (Table 2A). On the other hand, the BCRP activities estimated based on the fitting approach using blood concentration-time profile for each polymorphism (Step 3) were $0.37-0.38,0.19-0.28$, and $0.48-0.54$ under assumptions \#1, \#2, and \#3, respectively (Table 2B). Under the assumption \#1, however, different $f_{a a}$ values were thus obtained between the extended clearance concept-based approach and the fitting approach. This result showed that no parameter set could reproduce both the AUC and the concentration-time profile of rosuvastatin in the 421 CC , 421 CA , and 421AA subjects at the same time under the assumption \#1. The WSS and AIC values in the assumptions \#1 and \#3 were largest and lowest, respectively, regardless of the used β (Table 3), which further suggests that the assumption \#1 showed less validity, whereas the assumption $\# 3$ is more appropriate than the other assumptions.

DMD \#78816

Tanaka et al (2015) calculated BCRP activity of 421AA subject under assumption \#1. The effect of BCRP activity on biliary excretion was thought to be little than that on intestinal absorption because of clinical observed unchanged $t_{1 / 2}$ by c. $421 \mathrm{C}>$ A polymorphism (Keskitalo et al., 2009b; Wan et al., 2015; Zhang et al., 2006). In the present study, however, the $\mathrm{t}_{1 / 2}$ in 421 AA was higher than that in 421 CC under assumptions \#1, but almost the same as that in 421 CC under assumption \#2 and \#3 (Table 4), whereas clinically observed $t_{1 / 2}$ in 421 AA was almost the same as that in 421 CC (Supplemental Table S2). Thus, similar $t_{1 / 2}$ between 421 CC and 421AA cannot be explained by the assumption \#1, but can be explained by the assumption \#2 and \#3, in which $\mathrm{c} .421 \mathrm{C}>\mathrm{A}$ polymorphism is assumed to affect BCRP activity in the liver. This would be probably because of extensive enterohepatic circulation of rosuvastatin: The decrease in hepatic elimination due to $\mathrm{c} .421 \mathrm{C}>\mathrm{A}$ polymorphism leads to increase in gastrointestinal absorption, resulting in compensation for the impact on systemic elimination.

The protein expression level of BCRP c. $421 \mathrm{C}>\mathrm{A}$ variant in transfected cell lines was reported to be $24-47 \%$ of that of wild-type BCRP (Kondo et al., 2004; Matsuo et al., 2009; Tamura et al., 2006). It was also reported that BCRP protein expression in human placenta of homozygous subjects is about half that in the case of wild-type BCRP

DMD \#78816
(Kobayashi et al., 2005). In the present study, if we assume that the transport of rosuvastatin in apical membranes of small intestine and liver of humans is primarily mediated by BCRP, and is directly affected by the BCRP expression level, the $f_{a a}$ value should represent the fraction of BCRP expression level in homozygous subjects relative to that in wild-type, and we can conclude that assumption \#3, which proposed the $f_{a a}$ value of $0.48-0.54$ (Table 2), gives the best agreement with those reported values for the decrease in BCRP expression level. However, some of previous reports indicated minimal effect of the polymorphism on BCRP expression level (Mizuarai et al., 2004; Urquhart et al., 2008; Zamber et al., 2003), and the validity of the assumption \#3 cannot be fully supported by such previous reports alone. In addition, only the mean values of plasma concentration data without tissue or biliary ones were used for the present analysis, resulting in the limitation of the parameter estimates. The PBPK model (Supplemental Fig. S1) relies on large number of assumptions and sole use of plasma data, which may not be enough informative, but provide limitation in the evaluation of the reduced BCRP activity. Population PBPK approach as suggested by Tsamandouras et al. (2015) may provide another better estimation. Confirmation of the modeling using either pharmacodynamic or positron emission tomography data may also be necessary to obtain final conclusion.

DMD \#78816

The present findings quantitatively support the importance of BCRP in the absorption and the biliary excretion of rosuvastatin. However, rosuvastatin is also a substrate of other ABC transporters, such as multidrug resistance-associated protein (MRP) 2 and P-glycoprotein (Li et al., 2013; Zhou et al., 2013), both of which are considered to contribute to the biliary excretion of various drugs. Nevertheless, in the present study, it was assumed that BCRP is the only contributor to the $\mathrm{CL}_{\text {int,bile }}$, and this assumption may overestimate the role of BCRP. The $f_{\text {aa }}$ values obtained in Step 3 was not close to zero under any assumptions (Table 2B), and this may be explained by the contribution of other transporters than BCRP. Thus, more information about the roles of these transporters in humans is needed to explain clinically observed data more accurately.

Previous information on the effect of $\mathrm{c} .421 \mathrm{C}>\mathrm{A}$ polymorphism on rosuvastatin pharmacokinetics is comprehensively summarized in Supplemental Table S2. It is noteworthy that the influence of $\mathrm{c} .421 \mathrm{C}>\mathrm{A}$ polymorphism in homozygous subjects is much more marked than would be expected from the change in heterozygous subjects: The AUC of rosuvastatin in heterozygous subjects was only 1.2 times higher than that in wild-type subjects, whereas that in homozygous subjects was 2.4 times higher (Keskitalo et al., 2009b; Supplemental Table S2). A similar tendency is observed in all the reports listed in Supplemental Table S2, except only for the report by Zhou et al. (2013). In

DMD \#78816
addition, similar phenomena have also been reported for atorvastatin (Birmingham et al., 2015a; Keskitalo et al., 2009b), fluvastatin (Keskitalo et al., 2009a), and sulfasalazine (Yamasaki et al., 2008) due to c.421C>A polymorphism. In the present study, BCRP activity in heterozygous and homozygous subjects was individually estimated by assessing $f_{c a}$ and $f_{a a}$ values, respectively, in Steps 2 and 3, and a similar tendency was reproduced under all the assumptions: The $f_{c a}$ values were relatively close to unity whereas $f_{a a}$ values were much lower than unity (Table 2). Although the reason for the apparent inconsistency between heterozygous and homozygous subjects is unclear, a possible explanation would be the difference of the stability and activity in the different combinations of BCRP dimerization. Three combinations of BCRP dimer can be considered for the subjects with the heterozygous polymorphism of $\mathrm{c} .421 \mathrm{C}>\mathrm{A}$; the homodimer of wild-type, the homodimer of variant, and the heterodimer of wild-type and variant. If the stability and activity of the heterodimer is similar to those of the homodimer of wild-type, the BCRP activity in the heterozygous subject might also be similar to that in wild-type subject. Further study at the level of a molecular about wild-type and mutated gene products of BCRP is required for the estimation of the BCRP activity in heterozygous subjects.

Much lower levels of BCRP expression and transport activity have been reported

DMD \#78816
for other polymorphisms, such as $\mathrm{c} .376 \mathrm{C}>\mathrm{T}$ (Matsuo et al., 2009), and for multi heterozygous ($\mathrm{c} .376 \mathrm{C}>\mathrm{T}$ and $\mathrm{c} .421 \mathrm{C}>\mathrm{A}$, and $\mathrm{c} .34 \mathrm{G}>\mathrm{A}$ and $\mathrm{c} .421 \mathrm{C}>\mathrm{A}$) subjects (Gotanda et al., 2015; Kobayashi et al., 2005; Wan et al., 2015). The allele frequency of c.376C>T polymorphism is only 0.028 in Japanese (Maekawa et al., 2006) and limited information is available in other racial groups whereas such variants might lead to significant side effects or reduced drug efficacy. The PBPK model analysis and simulation used here should be improved to predict the potential risks in patients with such rare polymorphisms of BCRP.

The strategy in the present study for quantitative estimation of the influence of c. $421 \mathrm{C}>$ A polymorphism on BCRP activity requires pharmacokinetic profiles in mixed population after p.o. and i.v. administrations (Step 1), that after p.o. administration in each genotype, and allele frequency (Steps 2 and 3). Tomita et al. (2013) have proposed that the ethnic difference of allele frequency of polymorphisms in $O A T P 1 B 1$ and $A B C G 2$ genes cannot fully explain difference in pharmacokinetics of rosuvastatin between Caucasians and Asian populations, suggesting the existence of unknown factors other than the allele frequency responsible for ethnic difference in OATP1B1 activity. Since similar unknown factors may also be present in BCRP activity, the present studies utilized the pharmacokinetic information only in Caucasians. From this point of view, it can be

DMD \#78816
reasonably speculated that the present evaluation of alteration in BCRP activity (Table 2) could be valid only in Caucasian populations, and that all the literature information should be obtained from Asian populations if we attempt to evaluate BCRP activity in Asians. On the other hand, Wu et al. (2017) have recently found no ethnic difference in pharmacokinetics of rosuvastatin after p.o. administration when all the subjects are wildtype for both genes (OATP1B1 and BCRP). Based on their proposal, the findings obtained in the present study may also be applicable to Asian populations, if we assume no ethnic difference in overall pharmacokinetics of rosuvastatin other than pharmacogenetics. Further studies are needed to clarify the relevance to ethnic difference of the present estimation of the BCRP activity in each $A B C G 2$ genotype.

DMD \#78816

Authorship Contributions

Participated in research design: Toshimoto and Sugiyama

Performed data analyses: Futatsugi and Toshimoto

Wrote or contributed to the writing of the manuscript: Futatsugi, Toshimoto, Yoshikado,

Sugiyama, and Kato

DMD \#78816

References

Adkison KK, Vaidya SS, Lee DY, Koo SH, Li L, Mehta AA, Gross AS, Polli JW, Humphreys JE, Lou Y, and Lee EJ (2010) Oral sulfasalazine as a clinical BCRP probe substrate: pharmacokinetic effects of genetic variation (C421A) and pantoprazole coadministration. J Pharm Sci 99: 1046-1062.

Bailey KM, Romaine SP, Jackson BM, Farrin AJ, Efthymiou M, Barth JH, Copeland J, McCormack T, Whitehead A, Flather MD, Samani NJ, Nixon J, Hall AS, and Balmforth AJ (2010) Hepatic metabolism and transporter gene variants enhance response to rosuvastatin in patients with acute myocardial infarction: the GEOSTAT-1 Study. Circ Cardiovasc Genet 3: 276-285.

Birmingham BK, Bujac SR, Elsby R, Azumaya CT, Wei C, Chen Y, Mosqueda-Garcia R, and Ambrose HJ (2015a) Impact of ABCG2 and SLCO1B1 polymorphisms on pharmacokinetics of rosuvastatin, atorvastatin and simvastatin acid in Caucasian and Asian subjects: a class effect? Eur J Clin Pharmacol 71: 341-355.

Birmingham BK, Bujac SR, Elsby R, Azumaya CT, Zalikowski J, Chen Y, Kim K, and Ambrose HJ (2015b) Rosuvastatin pharmacokinetics and pharmacogenetics in Caucasian and Asian subjects residing in the United States. Eur J Clin Pharmacol 71: 329-340.

DMD \#78816

Cooper KJ, Martin PD, Dane AL, Warwick MJ, Schneck DW, and Cantarini MV (2002)

The effect of fluconazole on the pharmacokinetics of rosuvastatin. Eur J Clin Pharmacol 58: 527-531.

Davies B and Morris T (1993) Physiological parameters in laboratory animals and humans. Pharm Res 10: 1093-1095.

DeSesso JM and Jacobson CF (2001) Anatomical and physiological parameters affecting gastrointestinal absorption in humans and rats. Food Chem Toxicol 39: 209-228.

Elsby R, Hilgendorf C, and Fenner K (2012) Understanding the critical disposition pathways of statins to assess drug-drug interaction risk during drug development: it's not just about OATP1B1. Clin Pharmacol Ther 92: 584-598.

Gotanda K, Tokumoto T, Hirota T, Fukae M, and Ieiri I (2015) Sulfasalazine disposition in a subject with $376 \mathrm{C}>\mathrm{T}$ (nonsense mutation) and $421 \mathrm{C}>\mathrm{A}$ variants in the ABCG 2 gene. Br J Clin Pharmacol 80: 1236-1237.

Hirano M, Maeda K, Matsushima S, Nozaki Y, Kusuhara H, and Sugiyama Y (2005) Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin. Mol Pharmacol 68: 800-807.

Honjo Y, Morisaki K, Huff LM, Robey RW, Hung J, Dean M, and Bates SE (2002) Singlenucleotide polymorphism (SNP) analysis in the ABC half-transporter ABCG2

DMD \#78816
(MXR/BCRP/ABCP1). Cancer Biol Ther 1: 696-702.

Ieiri I (2012) Functional significance of genetic polymorphisms in P-glycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Drug Metab Pharmacokinet 27: 85-105.

Imai Y, Nakane M, Kage K, Tsukahara S, Ishikawa E, Tsuruo T, Miki Y, and Sugimoto Y (2002) C421A Polymorphism in the Human Breast Cancer Resistance Protein Gene Is Associated with Low Expression of Q141K Protein and Low-Level Drug Resistance. Mol Cancer Ther 1: 611-616.

Ito K, Kusuhara H, and Sugiyama Y (1999) Effects of intestinal CYP3A4 and Pglycoprotein on oral drug absorption--theoretical approach. Pharm Res 16: 225-231.

Karibe T, Hagihara-Nakagomi R, Abe K, Imaoka T, Mikkaichi T, Yasuda S, Hirouchi M, Watanabe N, Okudaira N, Izumi T (2015) Evaluation of the usefulness of breast cancer resistance protein (BCRP) knockout mice and BCRP inhibitor-treated monkeys to estimate the clinical impact of BCRP modulation on the pharmacokinetics of BCRP substrates. Pharm Res 32: 1634-1647.

Kato M, Chiba K, Hisaka A, Ishigami M, Kayama M, Mizuno N, Nagata Y, Takakuwa S, Tsukamoto Y, Ueda K, Kusuhara H, Ito K, and Sugiyama Y (2003) The intestinal first-pass metabolism of substrates of CYP3A4 and P-glycoprotein-quantitative

DMD \#78816
analysis based on information from the literature. Drug Metab Pharmacokinet 18: 365-372.

Kawai R, Mathew D, Tanaka C, and Rowland M (1998) Physiologically based pharmacokinetics of cyclosporine A : extension to tissue distribution kinetics in rats and scale-up to human. J Pharmacol Exp Ther 287: 457-468.

Keskitalo JE, Pasanen MK, Neuvonen PJ, and Niemi M (2009a) Different effects of the ABCG2 c. $421 \mathrm{C}>$ A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics 10: 1617-1624.

Keskitalo JE, Zolk O, Fromm MF, Kurkinen KJ, Neuvonen PJ, and Niemi M (2009b) ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther 86: 197-203.

Kobayashi D, Ieiri I, Hirota T, Takane H, Maegawa S, Kigawa J, Suzuki H, Nanba E, Oshimura M, Terakawa N, Otsubo K, Mine K, and Sugiyama Y (2005) Functional assessment of ABCG2 (BCRP) gene polymorphisms to protein expression in human placenta. Drug Metab Dispos 33: 94-101.

Kondo C, Suzuki H, Itoda M, Ozawa S, Sawada J, Kobayashi D, Ieiri I, Mine K, Ohtsubo K, and Sugiyama Y (2004) Functional Analysis of SNPs Variants of BCRP/ABCG2. Pharm Res 21: 1895-1903.

DMD \#78816

Kusuhara H, Furuie H, Inano A, Sunagawa A, Yamada S, Wu C, Fukizawa S, Morimoto N, Ieiri I, Morishita M, Sumita K, Mayahara H, Fujita T, Maeda K, and Sugiyama Y (2012) Pharmacokinetic interaction study of sulphasalazine in healthy subjects and the impact of curcumin as an in vivo inhibitor of BCRP. Br J Pharmacol 166: 1793-1803.

Lee HK, Hu M, Lui S, Ho CS, Wong CK, and Tomlinson B (2013) Effects of polymorphisms in ABCG2, SLCO1B1, SLC10A1 and CYP2C9/19 on plasma concentrations of rosuvastatin and lipid response in Chinese patients. Pharmacogenomics 14: 1283-1294.

Lee CA, O'Connor MA, Ritchie TK, Galetin A, Cook JA, Ragueneau-Majlessi I, Ellens H, Feng B, Taub ME, Paine MF, Polli JW, Ware JA, Zamek-Gliszczynski MJ (2015) Breast cancer resistance protein (ABCG2) in clinical pharmacokinetics and drug interactions: practical recommendations for clinical victim and perpetrator drugdrug interaction study design. Drug Metab Dispos 43: 490-509.

Li J, Cusatis G, Brahmer J, Sparreboom A, Robey RW, Bates SE, Hidalgo M, and Baker S (2014) Association of variant ABCG2 and the pharmacokinetics of epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients. Cancer Biol Ther 6: 432-438.

DMD \#78816

Li J, Wang Y, and Hidalgo IJ (2013) Kinetic analysis of human and canine P-glycoproteinmediated drug transport in MDR1-MDCK cell model: approaches to reduce falsenegative substrate classification. J Pharm Sci 102: 3436-3446.

Maekawa K, Itoda M, Sai K, Saito Y, Kaniwa N, Shirao K, Hamaguchi T, Kunitoh H, Yamamoto N, Tamura T, Minami H, Kubota K, Ohtsu A, Yoshida T, Saijo N, Kamatani N, Ozawa S, and Sawada J (2006) Genetic variation and haplotype structure of the ABC transporter gene ABCG 2 in a Japanese population. Drug Metab Pharmacokinet 21: 109-121.

Maliepaard M, Scheffer GL, Faneyte IF, van Gastelen MA, Pijnenborg AC, Schinkel AH, van De Vijver MJ, Scheper RJ, and Schellens JH (2001) Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res 61: 3458-3464.

Mao Q and Unadkat JD (2015) Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport--an update. AAPS J 17: 65-82.

Martin PD, Warwick MJ, Dane AL, Brindley C, and Short T (2003a) Absolute oral bioavailability of rosuvastatin in healthy white adult male volunteers. Clin Ther 25: 2553-2563.

Martin PD, Warwick MJ, Dane AL, Hill SJ, Giles PB, Phillips PJ, and Lenz E (2003b)

DMD \#78816

Metabolism, excretion, and pharmacokinetics of rosuvastatin in healthy adult male volunteers. Clin Ther 25: 2822-2835.

Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Ikebuchi Y, Ito K, Kusanagi Y, Chiba T, Tadokoro S, Takada Y, Oikawa Y, Inoue H, Suzuki K, Okada R, Nishiyama J, Domoto H, Watanabe S, Fujita M, Morimoto Y, Naito M, Nishio K, Hishida A, Wakai K, Asai Y, Niwa K, Kamakura K, Nonoyama S, Sakurai Y, Hosoya T, Kanai Y, Suzuki H, Hamajima N, and Shinomiya N (2009) Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci Transl Med 1: 1-8.

Mizuarai S, Aozasa N, and Kotani H (2004) Single nucleotide polymorphisms result in
impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2. Int J Cancer 109: 238-246.

Mizuno T, Fukudo M, Terada T, Kamba T, Nakamura E, Ogawa O, Inui K, and Katsura
T (2012) Impact of genetic variation in breast cancer resistance protein (BCRP/ABCG2) on sunitinib pharmacokinetics. Drug Metab Pharmacokinet 27: 631-639.

Morisaki K, Robey RW, Ozvegy-Laczka C, Honjo Y, Polgar O, Steadman K, Sarkadi B, and Bates SE (2005) Single nucleotide polymorphisms modify the transporter

DMD \#78816
activity of ABCG2. Cancer Chemother Pharmacol 56: 161-172.

Nakagawa H, Toyoda Y, Wakabayashi-Nakao K, Tamaki H, Osumi M, and Ishikawa T
(2011) Ubiquitin-mediated proteasomal degradation of ABC transporters: a new aspect of genetic polymorphisms and clinical impacts. J Pharm Sci 100: 3602-3619.

Narjoz C, Cessot A, Thomas-Schoemann A, Golmard JL, Huillard O, Boudou-Rouquette P, Behouche A, Taieb F, Durand JP, Dauphin A, Coriat R, Vidal M, Tod M, Alexandre J, Loriot MA, Goldwasser F, and Blanchet B (2015) Role of the lean body mass and of pharmacogenetic variants on the pharmacokinetics and pharmacodynamics of sunitinib in cancer patients. Invest New Drugs 33: 257-268.

Pfeifer ND, Yang K, Brouwer KL (2013) Hepatic basolateral efflux contributes significantly to rosuvastatin disposition I: characterization of basolateral versus biliary clearance using a novel protocol in sandwich-cultured hepatocytes. J Pharmacol Exp Ther 347: 727-736.

Rodgers T and Rowland M (2006) Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci 95: 1238-1257.

Sugiyama Y, Maeda K, Toshimoto K (2017) Is ethnic variability in the exposure to rosuvastatin explained only by genetic polymorphisms in OATP1B1 and BCRP or

```
DMD #78816
```

should the contribution of intrinsic ethnic differences in OATP1B1 be considered? J Pharm Sci 106: 2227-2230.

Tamura A, Watanabe M, Saito H, Nakagawa H, Kamachi T, Okura I, and Ishikawa T (2006) Functional validation of the genetic polymorphisms of human ATP-binding cassette (ABC) transporter ABCG2: identification of alleles that are defective in porphyrin transport. Mol Pharmacol 70: 287-296.

Tanaka Y, Kitamura Y, Maeda K, and Sugiyama Y (2015) Quantitative Analysis of the ABCG2 c. $421 \mathrm{C}>$ A Polymorphism Effect on In Vivo Transport Activity of Breast Cancer Resistance Protein (BCRP) Using an Intestinal Absorption Model. J Pharm Sci 104: 3039-3048.

Tomita Y, Maeda K, and Sugiyama Y (2013) Ethnic variability in the plasma exposures of OATP1B1 substrates such as HMG-CoA reductase inhibitors: a kinetic consideration of its mechanism. Clin Pharmacol Ther 94: 37-51.

Tomlinson B, Hu M, Lee VW, Lui SS, Chu TT, Poon EW, Ko GT, Baum L, Tam LS, and Li EK (2010) ABCG2 polymorphism is associated with the low-density lipoprotein cholesterol response to rosuvastatin. Clin Pharmacol Ther 87: 558-562.

Tsamandouras N, Dickinson G, Guo Y, Hall S, Rostami-Hodjegan A, Galetin A, Aarons L (2015) Development and Application of a Mechanistic Pharmacokinetic Model
for Simvastatin and its Active Metabolite Simvastatin Acid Using an Integrated Population PBPK Approach. Pharm Res 32: 1864-1883.

Urquhart BL, Ware JA, Tirona RG, Ho RH, Leake BF, Schwarz UI, Zaher H, Palandra J, Gregor JC, Dresser GK, and Kim RB (2008) Breast cancer resistance protein (ABCG2) and drug disposition: intestinal expression, polymorphisms and sulfasalazine as an in vivo probe. Pharmacogenet Genomics 18: 439-448.

Wan Z, Wang G, Li T, Xu B, Pei Q, Peng Y, Sun H, Cheng L, Zeng Y, Yang G, and Zhu YS (2015) Marked Alteration of Rosuvastatin Pharmacokinetics in Healthy Chinese with ABCG2 34G>A and 421C>A Homozygote or Compound Heterozygote. J Pharmacol Exp Ther 354: 310-315.

Watanabe T, Kusuhara H, and Sugiyama Y (2010) Application of physiologically based pharmacokinetic modeling and clearance concept to drugs showing transportermediated distribution and clearance in humans. J Pharmacokinet Pharmacodyn 37:

575-590.

Watanabe T, Kusuhara H, Watanabe T, Debori Y, Maeda K, Kondo T, Nakayama H, Horita S, Ogilvie BW, Parkinson A, Hu Z, and Sugiyama Y (2011) Prediction of the overall renal tubular secretion and hepatic clearance of anionic drugs and a renal drug-drug interaction involving organic anion transporter 3 in humans by in vitro

DMD \#78816
uptake experiments. Drug Metab Dispos 39: 1031-1038.

Winiwarter S, Bonham NM, Ax F, Hallberg A, Lennernas H, and Karlen A (1998)

Correlation of human jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approach. J Med Chem 41: 4939-4949.

Wu HF, Hristeva N, Chang J, Liang X, Li R, Frassetto L, Benet LZ (2017) Rosuvastatin Pharmacokinetics in Asian and White Subjects Wild Type for Both OATP1B1 and BCRP Under Control and Inhibited Conditions. J Pharm Sci 106:2751-2757.

Yamasaki Y, Ieiri I, Kusuhara H, Sasaki T, Kimura M, Tabuchi H, Ando Y, Irie S, Ware J, Nakai Y, Higuchi S, and Sugiyama Y (2008) Pharmacogenetic characterization of sulfasalazine disposition based on NAT2 and ABCG2 (BCRP) gene polymorphisms in humans. Clin Pharmacol Ther 84: 95-103.

Yoshikado T, Yoshida K, Kotani N, Nakada T, Asaumi R, Toshimoto K, Maeda K,

Kusuhara H, and Sugiyama Y (2016) Quantitative Analyses of Hepatic OATPMediated Interactions Between Statins and Inhibitors Using PBPK Modeling With a Parameter Optimization Method. Clin Pharmacol Ther 100: 513-523.

Zamber CP, Lamba JK, Yasuda K, Farnum J, Thummel K, Schuetz JD, and Schuetz EG (2003) Natural allelic variants of breast cancer resistance protein (BCRP) and their

DMD \#78816
relationship to BCRP expression in human intestine. Pharmacogenetics 13: 19-28. Zhang W, Yu BN, He YJ, Fan L, Li Q, Liu ZQ, Wang A, Liu YL, Tan ZR, Fen J, Huang Y F, and Zhou H H (2006) Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males. Clin Chim Acta 373: 99-103.

Zhou Q, Ruan ZR, Yuan H, Xu DH, and Zeng S (2013) ABCB1 gene polymorphisms, ABCB 1 haplotypes and $\mathrm{ABCG} 2 \mathrm{c} .421 \mathrm{c}>\mathrm{A}$ are determinants of inter-subject variability in rosuvastatin pharmacokinetics. Pharmazie 68: 129-134.

Zhou Q, Ruan ZR, Yuan H, and Zeng S (2012) CYP2C9*3(1075A>C), MDR1 G2677T/A and MDR1 C3435T are determinants of inter-subject variability in fluvastatin pharmacokinetics in healthy Chinese volunteers. Arzneimittelforschung 62: 519524.

DMD \#78816

FOOTNOTES

This work was supported by a Grant-in-Aid for Scientific Research (S) [24229002 to
T.Y. and Y.S.] from the Japan Society for the Promotion of Science (JSPS).

DMD \#78816

Figure Legends

Fig. 1

PBPK model fitting of blood concentration-time profiles of orally and intravenously administered rosuvastatin in mixed Caucasian subjects

Fitted lines obtained by assuming β values of $0.2,0.31$, and 0.5 are shown in panels A, B, and C, respectively. Closed and open symbols represent clinically observed blood concentration data after i.v. and p.o. administration in mixed Caucasian subjects with various $A B C G 2$ genotypes, respectively.(Martin et al., 2003a)

Fig. 2

PBPK model fitting of blood concentration-time profiles of rosuvastatin after oral administration in 421 CC , 421 CA , and 421 AA subjects

Previously reported blood concentration-time data of rosuvastatin in 421CC (circles),

421CA (squares), and 421AA (triangles) subjects (Keskitalo et al., 2009b) were used for simultaneous fitting. Three assumptions (\#1) c.421C>A polymorphism only affects intestinal BCRP (panels A, B, and C), (\#2) c.421C>A polymorphism only affects hepatic BCRP (panels D, E, and F), and (\#3) c. $421 \mathrm{C}>$ A polymorphism affects both (panels G, H, and I), were adopted. Three different β values, 0.2 (panels A, D, and G), 0.31 (panels B ,

DMD \#78816

E, and H) and 0.5 (panels C, F, and I) were used. The fitted lines represent 421CC (solid
lines), 421CA (dotted lines), and 421AA subjects (broken lines).

DMD \#78816

Table 1 Pharmacokinetic parameters of rosuvastatin
A. Fixed parameters

Drug parameters		Values	References
K_{pa}	-	0.0870	Rodgers and Rowland., 2006
K_{pm}	-	0.144	Rodgers and Rowland., 2006
K_{ps}	-	0.439	Rodgers and Rowland., 2006
CL_{r}	L / h	19.7	Martin et al., 2003a
$\mathrm{CL}_{\mathrm{int}, \mathrm{met}}$	L / h	1.59^{d}	
f_{b}	-	0.174	Watanabe et al., 2010
f_{h}	-	0.179^{e}	
β^{c}	-	$0.2 / 0.31^{\mathrm{f}} / 0.5$	Fixed to three different values
γ^{c}	-	0.25^{g}	Martin et al., 2003a
Dose $_{\mathrm{po}}$	$\mu \mathrm{g}$	40000	Martin et al., 2003a
Dose $_{\mathrm{iv}}$	$\mu \mathrm{g} / \mathrm{h}$	2000	Martin et al., 2003a; Kato et al., 2003; Watanabe et al., 2010 $\mathrm{F}_{\mathrm{a}} \mathrm{F}_{\mathrm{g}}$

B. Optimized parameters ${ }^{\mathrm{a}}$

Parameters	Initial values	Range	Fitted values		
			$\beta=0.2$	$\beta=0.31$	$\beta=0.5$
$\mathrm{k}_{\mathrm{a}}\left(\mathrm{h}^{-1}\right)$	0.1	$0.01 \sim 6$	0.125 ± 0.085	0.130 ± 0.089	0.125 ± 0.083
$\mathrm{k}_{\text {stomach }}\left(\mathrm{h}^{-1}\right)$	0.1	Plus only	0.413 ± 0.297	0.346 ± 0.210	0.291 ± 0.154
$\mathrm{R}_{\text {dif }}{ }^{\mathrm{c}}$	0.0192^{e}	$0.00502 \sim 0.0408^{\mathrm{c}}$	0.00502 ± 0.00246	0.00502 ± 0.00350	0.00502 ± 0.00685
$\mathrm{k}_{\text {bile }}\left(\mathrm{h}^{-1}\right)$	1	Plus only	2.07 ± 2.56	2.17 ± 2.70	2.73 ± 4.47
$\mathrm{CL}_{\text {int,all }}{ }^{\mathrm{c}}(\mathrm{L} / \mathrm{h})$	550^{h}	Plus only	680 ± 34	687 ± 38	706 ± 48
$\mathrm{WSS}^{\mathrm{i}}$			10.8	12.6	16.9
$\mathrm{AIC}^{\mathrm{j}}$			88.4	93.6	103

DMD \#78816
C. Intrinsic clearances numerically calculated from panels A and Bab

Parameters	$\beta=0.2$	$\beta=0.31$	$\beta=0.5$
	$15.4 \pm 7.6^{\mathrm{k}}$	$18.3 \pm 12.8^{\mathrm{K}}$	$26.6 \pm 36.4^{\mathrm{K}}$
$\mathrm{CL}_{\text {int,bile }}(\mathrm{L} / \mathrm{h})$	$3383 \pm 1658^{\mathrm{k}}$	$2205 \pm 1538^{\mathrm{k}}$	$1405 \pm 1918^{\mathrm{k}}$
$\mathrm{PS}_{\text {act }}(\mathrm{L} / \mathrm{h})$	$67.9 \pm 33.5^{\mathrm{K}}$	$44.3 \pm 31.0^{\mathrm{K}}$	$28.2 \pm 38.5^{\mathrm{K}}$
$\mathrm{PS}_{\text {dif,eff }}(\mathrm{L} / \mathrm{h})$	$17.0 \pm 8.4^{\mathrm{k}}$	$11.1 \pm 7.7^{\mathrm{k}}$	$7.05 \pm 9.64^{\mathrm{k}}$
$\mathrm{PS}_{\text {dif,inf }}(\mathrm{L} / \mathrm{h})$			

${ }^{\text {a }}$ Values are shown as the mean \pm standard deviation (SD)
${ }^{\mathrm{b}}$ All these parameters were mathematically calculated using parameters shown in Table 1A and 1B.
${ }^{\text {c }}$ Definition of these hybrid parameters were shown in Materials and Methods.
${ }^{\mathrm{d}}$ In-house data obtained in metabolic study using human liver microsomes
${ }^{\mathrm{e}}$ In-house data obtained in uptake study using suspended human hepatocytes
${ }^{\mathrm{f}}$ In-house data obtained in uptake study using sandwich-cultured human hepatocytes (SCHH)
${ }^{\mathrm{g}}$ Determination of γ was shown in Supplemental Information.
${ }^{\mathrm{h}}$ Determined based on the clearance concept using reported i.v. data (Martin et al., 2003a)
${ }^{\mathrm{i}}$ WSS was calculated using eq. (13).
${ }^{\mathrm{j}}$ AIC was calculated using eq. (14).
${ }^{\mathrm{k}}$ SD values were calculated by applying to the propagation of error assuming independent variables.

DMD \#78816

Table 2 Kinetic parameters associated with BCRP activity

		A. Extended clearance concepts			B. Fitting (Step 3) ${ }^{\text {b }}$		
		$\beta=0.2$	$\beta=0.31$	$\beta=0.5$	$\beta=0.2$	$\beta=0.31$	$\beta=0.5$
c. $421 \mathrm{C}>$ A polymorphism affects only intestinal BCRP (Assumption \#1)							
CL int,bile,cc $^{\text {(L/h) }}$		15.4	18.3	26.6	39.9 ± 28.2	36.4 ± 31.6	22.4 ± 31.8
$\mathrm{P}_{\text {BCRP,cc }}\left(10^{-5} \mathrm{~cm} / \mathrm{s}\right)$		4.73	4.72	4.72	14.2 ± 2.2	14.2 ± 2.2	14.2 ± 2.4
Fraction of BCRP activity ${ }^{\text {c }}$	$\mathrm{f}_{\text {ca }}$	0.753	0.755	0.759	0.749 ± 0.088	0.752 ± 0.088	0.754 ± 0.087
	f_{aa}	0.174	0.181	0.194	0.373 ± 0.051	0.376 ± 0.051	0.377 ± 0.054
Fraction of absorbed ${ }^{\text {d }}$	$\mathrm{F}_{\mathrm{a}} \mathrm{F}_{\mathrm{g}, \mathrm{cc}}$	0.413	0.414	0.414	$0.209 \pm 0.024^{\text {e }}$	$0.209 \pm 0.024{ }^{\text {e }}$	$0.209 \pm 0.026^{\text {e }}$
	$\mathrm{F}_{\mathrm{a}} \mathrm{F}_{\mathrm{g}, \mathrm{ca}}$	0.468	0.468	0.467	$0.257 \pm 0.034^{\text {e }}$	$0.257 \pm 0.034^{\text {e }}$	$0.256 \pm 0.036^{\text {e }}$
	$\mathrm{F}_{\mathrm{a}} \mathrm{F}_{\mathrm{g}, \mathrm{aa}}$	0.673	0.670	0.664	$0.391 \pm 0.041^{\text {e }}$	$0.389 \pm 0.041^{\text {e }}$	$0.388 \pm 0.044{ }^{\text {e }}$
c. $421 \mathrm{C}>$ A polymorphism affects only hepatic BCRP (Assumption \#2)							
CL int,bilecc $^{\text {(L/h) }}$		16.4	19.7	29.0	42.5 ± 17.7	51.0 ± 24.8	75.1 ± 45.3
$\mathrm{P}_{\mathrm{BCRP}, \mathrm{cc}}\left(10^{-5} \mathrm{~cm} / \mathrm{s}\right)$		4.37	4.37	4.37	9.10 ± 1.33	9.44 ± 1.26	10.2 ± 1.2
Fraction of BCRP activity ${ }^{\text {c }}$	$\mathrm{f}_{\text {ca }}$	0.797	0.773	0.715	0.751 ± 0.094	0.713 ± 0.096	0.624 ± 0.100
	$\mathrm{f}_{\text {a }}$	0.286	0.259	0.208	0.284 ± 0.048	0.250 ± 0.042	0.186 ± 0.033
Fraction of absorbed ${ }^{\text {d }}$	$\mathrm{F}_{\mathrm{a}} \mathrm{F}_{\mathrm{g}, \mathrm{cc}}$	0.429	0.429	0.429	$0.286 \pm 0.027^{\text {e }}$	$0.279 \pm 0.025^{\text {e }}$	$0.265 \pm 0.021^{\text {e }}$
	$\mathrm{F}_{\mathrm{a}} \mathrm{F}_{\mathrm{g}, \mathrm{ca}}$	0.429	0.429	0.429	$0.286 \pm 0.027^{\text {e }}$	$0.279 \pm 0.025^{\text {e }}$	$0.265 \pm 0.021^{\text {e }}$
	$\mathrm{F}_{\mathrm{a}} \mathrm{F}_{\mathrm{g}, \mathrm{aa}}$	0.429	0.429	0.429	$0.286 \pm 0.027^{\text {e }}$	$0.279 \pm 0.025^{\text {e }}$	$0.265 \pm 0.021^{\text {e }}$
c. $421 \mathrm{C}>$ A polymorphism affects both of intestinal and hepatic BCRP (Assumption \#3)							
CL int,bile,cc $^{\text {(L/h) }}$		16.0	19.0	27.6	41.4 ± 18.8	39.2 ± 21.0	25.7 ± 21.5
$\mathrm{P}_{\text {BCRP,cc }}\left(10^{-5} \mathrm{~cm} / \mathrm{s}\right)$		4.55	4.55	4.54	12.2 ± 1.5	12.5 ± 1.5	13.0 ± 1.7
Fraction of BCRP activity ${ }^{\text {c }}$	$\mathrm{f}_{\text {ca }}$	0.882	0.875	0.860	0.848 ± 0.050	0.839 ± 0.051	0.818 ± 0.055
	$\mathrm{fa}_{\text {a }}$	0.529	0.513	0.479	0.539 ± 0.036	0.522 ± 0.036	0.478 ± 0.041
Fraction of absorbed ${ }^{\text {d }}$	$\mathrm{F}_{\mathrm{a}} \mathrm{F}_{\mathrm{g}, \mathrm{cc}}$	0.421	0.421	0.421	$0.234 \pm 0.021{ }^{\text {e }}$	$0.230 \pm 0.020^{\text {e }}$	$0.223 \pm 0.021^{\text {e }}$
	$\mathrm{Fa}_{\mathrm{a}} \mathrm{Fg}_{\mathrm{g}, \mathrm{ca}}$	0.446	0.447	0.451	$0.262 \pm 0.025^{\text {e }}$	$0.260 \pm 0.024^{\text {e }}$	$0.257 \pm 0.026^{\text {e }}$
	$\mathrm{F}_{\mathrm{a}} \mathrm{F}_{\mathrm{g}, \mathrm{aa}}$	0.539	0.544	0.555	$0.348 \pm 0.028^{\text {e }}$	$0.350 \pm 0.028^{\text {e }}$	$0.358 \pm 0.031^{\text {e }}$

${ }^{\text {a }}$ Parameters were calculated based on extended clearance concept (Eqs. 22-25) to satisfy clinical AUC ratio (Keskitalo et al., 2009b).
${ }^{b}$ Parameters were optimized by simultaneous fitting of clinical data in $421 \mathrm{CC}, 421 \mathrm{CA}$, and 421 AA subjects (Keskitalo et al., 2009b) using Napp, v. 2.31 (Hisaka and Sugiyama, 1998).
${ }^{c}$ Fraction of BCRP activity in 421CA and 421AA to 421 CC subjects.
${ }^{\mathrm{d}}$ Calculated based on Eq. 1 using $\mathrm{P}_{\text {BCRP }}$ values (Ito et al., 1999).
${ }^{\mathrm{e}}$ SD values were calculated by applying to the propagation of error assuming independent variables.

Table 3 Evaluation of the fitting results with three different assumptions and $\boldsymbol{\beta}$ values

Parameters		Values	咢	
	$\beta=0.2$	$\beta=0.31$	\％	$\beta=0.5$
c． $421 \mathrm{C}>\mathrm{A}$ polymorphism affects only intestinal BCRP（Assumption \＃1）				
WSS	2.21	2.16	方	2.10
AIC	42.5	41.7	$\stackrel{\square}{6}$	40.7
c． $421 \mathrm{C}>$ A polymorphism affects only hepatic BCRP（Assumption \＃2）				
WSS	2.07	1.91	家	1.72
AIC	40.1	37.2	N	33.5
c． $421 \mathrm{C}>$ A polymorphism affects both of intestinal and hepatic BCRP（Assumption \＃3）				
WSS	1.71	1.64		1.54
AIC	33.4	31.9		29.6

Table 4 AUC and $t_{1 / 2}$ values obtained by the moment analysis of the simulated blood concentration-time profiles

$\mathrm{c} .421 \mathrm{C}>\mathrm{A}$ Genotype	$\beta=0.2$			$\beta=0.31$			$\beta=0.5$ 年			Reported values		
	AUC		$\mathrm{t}_{1 / 2}(\mathrm{~h})$	AUC		$\mathrm{t}_{1 / 2}(\mathrm{~h})$	AUC			AUC		$\mathrm{t}_{1 / 2}(\mathrm{~h})$
	($\mathrm{ng} \cdot \mathrm{h} / \mathrm{mL}$)	(vs.421CC)Ratio 		($\mathrm{ng} \cdot \mathrm{h} / \mathrm{mL}$)	Ratio . 421 CC)		(ng•h/mL)	Ratio (421CC)		$(\mathrm{ng} \cdot \mathrm{h} / \mathrm{mL})$	Ratio .421	
	c. $421 \mathrm{C}>$ A polymorphism affects only intestinal BCRP (Assumption \#1)									Keskitalo et al., 2009b		
CC	42.6	1	10.0	42.9	1	10.4	43.1	1	11.00	62.3	1	14.0
CA	54.9	1.29	11.0	55.0	1.28	11.3	55.2	1.28	$\begin{array}{r} 11.9 \stackrel{\rightharpoonup}{\hat{a}} \\ 0 \\ 0 \end{array}$	76.2	1.22	13.6
AA	96.7	2.27	14.2	96.5	2.25	14.5	96.2	2.23	15.0意	152	2.44	13.6
	c.421C $>$ A polymorphism affects only hepatic BCRP (Assumption \#2)									Keskitalo et al., 2009b		
CC	41.1	1	11.8	40.7	1	12.2	40.4	1	$13.6+$	62.3	1	14.0
CA	53.2	1.30	11.3	53.3	1.31	11.9	53.7	1.33	13.2	76.2	1.22	13.6
AA	109	2.64	9.91	109	2.67	10.4	109	2.70	11.8	152	2.44	13.6
	c. $421 \mathrm{C}>$ A polymorphism affects both of intestinal and hepatic BCRP (Assumption \#3)									Keskitalo et al., 2009b		
CC	40.8	1	10.9	41.0	1	11.1	41.3	1	11.6	62.3	1	14.0
CA	54.1	1.33	11.3	54.3	1.32	11.6	54.5	1.32	12.2	76.2	1.22	13.6
AA	110	2.69	12.5	110	2.67	12.9	110	2.66	13.7	152	2.44	13.6

Figure 1

Figure 2

