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ABSTRACT 

Over the past 20 years, the ability of the xenobiotic receptors to coordinate an array of drug-

metabolizing enzymes and transporters in response to endogenous and exogenous stimuli has 

been extensively characterized and well documented. The constitutive androstane receptor 

(CAR) and the pregnane X receptor (PXR) are the xenobiotic receptors that have received the 

most attention, as they regulate the expression of numerous proteins important to drug 

metabolism and clearance and formulate a central defensive mechanism to protect the body 

against xenobiotic challenges. However, accumulating evidence has shown that these 

xenobiotic sensors also control many cellular processes outside of their traditional realms of 

xenobiotic metabolism and disposition, including physiological and/or pathophysiological 

responses in energy homeostasis, cell proliferation, inflammation, tissue injury and repair, 

immune response, and cancer development. This review will highlight recent advances in 

studying the non-canonical functions of xenobiotic receptors with a particular focus placed on 

the roles of CAR and PXR in energy homeostasis and cancer development. 
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1. Introduction 

Nuclear receptors (NRs) are transcription factors that are activated by both endogenous and 

exogenous ligands, leading to the initiation of biological responses through alteration of target 

gene transcription (Forman and Evans, 1995). Utilizing classical endocrinology approaches, a 

number of steroid hormone receptors such as estrogen receptor, androgen receptor, 

glucocorticoid receptor, and progesterone receptor were initially isolated (Jensen and Jacobson, 

1960; Hollenberg et al., 1985; Misrahi et al., 1987; Lubahn et al., 1988). Containing relatively 

compact ligand-binding domains (LBDs), these receptors are responsive primarily to 

endogenous steroid hormones with high binding sensitivity often at nanomolar concentration 

ranges (Nagy and Schwabe, 2004; Sonoda et al., 2008). Different from these traditional 

endocrine receptors, receptors that respond to a diverse array of foreign compounds including 

environmental chemicals and clinically used drugs while lacking physiologically relevant 

endogenous ligands are termed xenobiotic receptors (XRs). These include but are not limited to 

the constitutive androstane receptor (CAR; NR1i3), the pregnane X receptor (PXR; NR1i2), the 

aryl hydrocarbon receptor (AhR; though it is not categorized in the NR family), and the 

peroxisome proliferator-activated receptors (PPARs) (Issemann and Green, 1990; Dreyer et al., 

1992; Kliewer et al., 1998; Moore et al., 2000; Denison and Nagy, 2003; Wang and LeCluyse, 

2003). Notably, XRs have bulky and less conserved LBDs which allow them to accommodate a 

structurally diverse library of ligands (Ekins et al., 2009). For instance, PXR, the primary 

regulator of CYP3A4 transcription, probably has the largest ligand-binding pocket in the entire 

NR superfamily, which enables the fitting of large and structurally diverse ligands (Watkins et 

al., 2001). Indeed, the broad spectrum of ligands that can activate PXR matches the substrate 

diversity of CYP3A4, the most abundant human liver cytochrome P450 enzyme that is 

responsible for the metabolism of 30-50% of clinically used drugs (Kumar and Surapaneni, 

2001; Zanger et al., 2008). In response to xenobiotic challenges, XRs coordinate a defensive 
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network by regulating the transcription of genes encoding drug-metabolizing enzymes (DMEs) 

and transporters, which facilitate the breakdown and excretion of foreign substances from the 

body (Handschin and Meyer, 2003; Qatanani and Moore, 2005; Wang et al., 2012). Consistent 

with their metabolism/detoxification roles, the majority of XRs are highly expressed in the liver 

and intestines, which are the primary organs responsible for metabolism and clearance of 

exogenous chemicals. Typically, XRs are sequestered in the cytoplasm and translocate to the 

nucleus of primary hepatocytes in vitro and intact liver in vivo, upon agonistic stimulation (Ikuta 

et al., 1998; Kawamoto et al., 1999; Kawana et al., 2003; Li et al., 2009). Once inside the 

nucleus, XRs heterodimerize with their protein partners and bind to specific response elements 

located upstream of their target genes to trigger transcription. While this process is beneficial to 

rid toxic compounds from the body in general, induction of DMEs and transporters by XR 

activation in response to pharmaceuticals is known to cause unexpected drug-drug interactions 

that can lead to severe toxicity and/or loss of therapeutic efficacy (Honkakoski et al., 2003; 

Köhle and Bock, 2009; Tolson and Wang, 2010).  

As xenobiotic sensors, CAR and PXR have been extensively studied over the past 20 years, 

due mostly to their broad and critical roles in governing the inductive expression of major DMEs 

such as phase I cytochrome P450 enzymes (i.e., CYP2B6, CYP2Cs, and CYP3A4) and phase II 

UDP-glucuronosyltransferases (i.e., UGT1A1 and UGT1A9) and sulfotransferases (i.e., 

SULT1A1, and SULT1D1), as well as drug transport proteins including organic anion-

transporting polypeptides (uptake) and multidrug resistance proteins (efflux) (Xie et al., 2000; 

Timsit and Negishi, 2007; Köhle and Bock, 2009; Banerjee et al., 2015). Research thus far has 

clearly established that these receptors form the backbone of xenobiotic response, especially in 

the liver and intestines, by upregulating the expression of an overlapping yet distinctive array of 

important DMEs and transporters. Of note, although the effects of XRs as xenobiotic sensors 

dictating chemical metabolism and disposition have been extensively investigated, accumulating 
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evidence reveals that XRs can also function as signaling molecules that modulate physiological 

and pathophysiological functions including energy metabolism, insulin signaling, inflammation, 

immune response, cell proliferation, apoptosis, autophagy, and cancer development (Gao and 

Xie, 2012; Yan et al., 2014; Banerjee et al., 2015; De Mattia et al., 2016; Kazantseva et al., 

2016; Roman et al., 2017; Gutiérrez-Vázquez and Quintana, 2018). This review aims to 

highlight the recent advances in our understanding of the non-traditional endobiotic roles of 

CAR and PXR with particular emphases on energy homeostasis and cancer development. 

 

2. Constitutive Androstane Receptor  

Initial characterization of CAR revealed that it was an orphan nuclear receptor that binds 

DNA as a heterodimer with the retinoid X receptor (RXR) without the involvement of any 

identified ligand (Baes et al., 1994). The high basal activity of CAR in immortalized liver cells, 

along with the early identification of the steroid ligands androstanol and androstenol as 

antagonists of CAR (though at concentrations much higher than the physiological levels) gave 

rise to its current established name (Baes et al., 1994; Forman et al., 1998). Orthologous mouse 

and rat CAR genes were cloned in the years following the isolation of human CAR, and the 

murine proteins were likewise found to heterodimerize with RXR and to display similar 

constitutive activity (Choi et al., 1997; Yoshinari et al., 2001). Our recognition of the importance 

of CAR in xenobiotic metabolism began with exploration into the enzyme-inducing effects of 

phenobarbital (PB), a powerful antiepileptic drug. The PB-provoked expression of CYP2B genes 

was found to involve a DNA response element accordingly denominated the phenobarbital-

responsive enhancer module (PBREM) in the CYP2B gene promoter regions, and CAR was 

established as the key nuclear receptor that regulates the inductive expression of CYP2B by 

numerous PB-like chemicals (Trottier et al., 1995; Park et al., 1996; Honkakoski and Negishi, 

1997; Honkakoski et al., 1998; Sueyoshi et al., 1999; Wei et al., 2000; Staudinger et al., 2013).  
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The mechanisms by which CAR is activated and deactivated along with its 

heterodimerization with RXR have been well elucidated. In primary hepatocytes, CAR remains 

cytosolic prior to activation either through direct interaction with a ligand or via indirect signaling 

pathways (Kawamoto et al., 1999; Kanno et al., 2005; Li and Wang, 2010). Inactive cytoplasmic 

CAR, phosphorylated at threonine 38 of the DNA-binding domain (DBD), gains activity through 

dephosphorylation of this residue via protein phosphatase 2A (PP2A), which is recruited to the 

CAR protein complex by dephosphorylated receptor for activated C kinase 1 (RACK1) (Mutoh et 

al., 2009; Mutoh et al., 2013). This activation could be antagonized by the extracellular signal-

regulated kinase 1/2 (ERK1/2) following the binding of epidermal growth factor (EGF) to its 

membrane receptor, EGFR (Koike et al., 2007; Osabe and Negishi, 2011) or via metformin-

mediated activation of the AMP-activated protein kinase (AMPK) (Yang et al., 2014). Most 

recently, Shizu et al. described a conversion between CAR monomer and homodimer states 

within the hepatocellular cytoplasm, where cytosolic CAR homodimerizes when cells are treated 

with EGF, and the complex dissociates when cells are treated with erlotinib, a tyrosine kinase 

inhibitor of EGFR (Shizu et al., 2017). This report further demonstrated that RACK1 binds CAR 

in the monomer state but not when CAR exists as a homodimer, as the homodimer interaction 

interface buries the requisite binding site. Another recent study suggested, however, that rather 

than taking place within the nucleus, heterodimerization of both CAR and PXR with RXR occurs 

within the cytoplasm. Dash and colleagues reported that nuclear entry of CAR-RXR and PXR-

RXR heterodimers is dependent on the intact nuclear localization signal (NLS) of at least one of 

the partners and is strongly influenced by the RXR NLS (Zelko et al., 2001; Dash et al., 2017). 

Interestingly, these results contrast with interaction energy-based predictions from the 

aforementioned study that would suggest that CAR-RXR heterodimerization would be favored 

over (and would thus preclude) CAR homodimerization in the cytoplasm if RXR were present. 

Although the precise cytoplasmic conditions and mechanisms of CAR dimerization remain 

elusive, both direct and indirect activators translocate cytosolic CAR to the nucleus as the 
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essential first step of activation. Hitherto, numerous xenobiotics have been identified as either 

direct or indirect activators of CAR, which are able to trigger complicated cellular responses in a 

CAR-dependent manner.  

Initial and extensive investigations have focused on the role of CAR in regulating DMEs and 

transporters that protectively dispose of exogenous compounds such as toxic environmental 

substances and drugs (Yamamoto et al., 2003; Qatanani and Moore, 2005). To date, both the 

molecular mechanisms and biological consequences of CAR-mediated xenobiotic metabolism 

and disposition have been well documented and thus will not be the focus of this review. As 

insight into the homeostatic effects of CAR deepens, an expanding body of literature has 

emerged exploring the endogenous roles of CAR beyond xenobiotic disposition. It has long 

been known that PB, a prototypical CAR activator, improves insulin sensitivity and decreases 

blood glucose levels in patients with type 2 diabetes (Lahtela et al., 1985). Metabolic benefits 

were observed in wild-type (WT) but not CAR-/- mice treated with 1,4-bis[2-(3,5-

dichloropyridyloxy)] benzene (TCPOBOP), a potent mouse CAR agonist (Dong et al., 2009; Gao 

et al., 2009). Additional studies have shown that CAR is involved in liver regeneration, 

inflammation, hepatocarcinogenesis, and renal ischemia-reperfusion-induced kidney injury 

(Huang et al., 2005; Tschuor et al., 2016; Tanner et al., 2018). Here we will concentrate on the 

recent findings regarding the role of CAR in energy homeostasis and cell proliferation. It is 

provocative that modulation of CAR activity in these domains may have therapeutic potential in 

managing diseases such as obesity, type 2 diabetes, and cancers. 

2.1. CAR and Energy Homeostasis 

      The involvement of CAR in energy homeostasis was first recognized over a decade ago 

when CAR activation by PB in mice resulted in downregulation of genes associated with 

gluconeogenesis and fatty acid synthesis (Ueda et al., 2002). Subsequently, growing evidence 

supporting a role of CAR in energy homeostasis and metabolic disorders has promoted 
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investigation into the broad function of CAR beyond xenobiotic disposition. In 2004, Maglich et 

al. reported that under caloric restriction and fasting, CAR mediated a compensatory response 

to limit energy expenditure in mice by downregulation of serum levels of triiodothyronine (T3) 

and tetraiodothyronine (T4), two major thyroid hormones that control the basal metabolic rate 

(Maglich et al., 2004). Notably, fasting stimulated a CAR-dependent induction of sult1a1, 

sult2a1, and ugt1a1, which are important for the metabolic breakdown of T3 and T4. In CAR-/- 

mice, however, fasting failed to induce the expression of these enzymes and the serum 

concentrations of T3 and T4 remained high, which led to more weight loss under caloric 

restriction than in WT mice (Maglich et al., 2004). Interestingly, in another report, while the 

authors did not observe fasting-stimulated CAR activation, the study demonstrated that CAR is 

required for a PB-induced decrease of T3 and T4 levels in the serum; treatment with PB or 

TCPOBOP induced the expression of sulfotransferases and UGTs that are important for T3 and 

T4 metabolism in WT but not CAR-/- mice (Qatanani et al., 2005). Given that decreased basal 

energy expenditure represents a major barrier for obese individuals trying to lose weight, 

antagonism of human CAR may potentially benefit patients under a weight loss program, if the 

above findings hold true in humans. In contrast to these findings, two research groups 

independently showed that activation of CAR by TCPOBOP markedly ameliorated symptoms of 

obesity, diabetes, and fatty liver induced by high-fat diet (HFD) in WT mice, while such effects 

were not observed in TCPOBOP-treated CAR-/- mice (Dong et al., 2009; Gao et al., 2009). 

Further gene expression and biochemical analyses have revealed that the metabolic benefits of 

CAR activation may involve the suppression of glucose and lipid production, the inhibition of 

triglyceride and VLDL export, and induction of β-oxidation and energy expenditure.   

Mechanistically, CAR-mediated energy homeostasis appears to be involved in a combined 

repression of an array of genes associated with gluconeogenesis, fatty acid synthesis, and 

energy expenditure such as phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-
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phosphatase (G6Pase), fatty acid synthase (FAS), and stearoyl-CoA desaturase-1 (SCD-1) (Yu 

et al., 2016). This downregulation is involved in the prevention of the forkhead box protein O1 

(FOXO1) transcription factor from interacting with insulin response element binding sites located 

upstream of genes such as PEPCK1, G6Pase, and insulin-like growth factor-binding protein 1 

(Kodama et al., 2004). Through direct interaction between CAR and FOXO1, activated CAR 

acting as a corepressor downregulates FOXO1-mediated transcription of gluconeogenic genes. 

Binding of CAR to the direct repeat 1 site in the PEPCK promoter in place of hepatic nuclear 

factor-4α (HNF4α), a key hepatic factor crucial for the expression of bile acid synthesis and 

gluconeogenic genes, has also been reported as a means of metabolic suppression by CAR 

(Miao et al., 2006). The peroxisome proliferator-activated receptor gamma coactivator-1α 

(PGC1α) is another key transcriptional coactivator that governs energy metabolism by 

regulating the expression of PEPCK and G6Pase (Herzig et al., 2001). Gao et al. recently 

demonstrated that when bound by its ligand, CAR alters the subcellular localization and 

degradation of PGC1α through direct CAR-PGC1α interaction, by which the CAR-PGC1α 

complex is co-redistributed to the promyelocytic leukemia protein-nuclear bodies (PML-NBs), 

where activated CAR facilitates the ubiquitination and degradation of PGC1α by recruiting Cullin 

1 E3 ligase (Gao et al., 2015). This finding suggests that in addition to transcriptional 

repression, posttranslational modification of protein stability may also contribute to CAR-

mediated suppression of hepatic gluconeogenesis. 

In contrast with the relatively consistent repression of gluconeogenesis by CAR activation, 

more conflicting experimental results have been generated regarding the role of CAR in the 

regulation of lipogenesis. Activation of CAR in mice has been shown to mitigate hepatic 

steatosis, increase glucose tolerance and insulin sensitivity, and alleviate or prevent obesity in 

diabetic mouse models (Dong et al., 2009; Gao et al., 2009). CAR-mediated anti-lipogenic 

effects were also observed in hyperlipidemic HepG2 cell cultures treated with evodia alkaloids 
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(Yu et al., 2016). Furthermore, the hormone irisin was recently identified as a direct target of 

CAR and protects HFD-induced obese mice through the CAR-irisin axis (Mo et al., 2016). 

Results of this study corroborated prior research on the effects of the hormone and 

demonstrated that hepatic expression of irisin suppresses lipogenesis (Zhang et al., 2013; 

Polyzos et al., 2014; Mo et al., 2016). 

On the other hand, the majority of current studies were carried out under 

metabolic/nutritional challenges such as HFD-feed or caloric restriction. Interestingly, Marmugi 

et al. reported that treatment with TCPOBOP provoked the expression of lipogenic and 

glycolytic genes and increased lipid levels in a CAR-dependent manner in the livers of healthy 

mice under physiological conditions (Marmugi et al., 2016). A novel CAR target gene within the 

lipogenic category, Pnpla3 (Romeo et al., 2008; Smagris et al., 2015), was identified that may 

contribute to the observed fatty liver phenotype. A separate study demonstrated that the high 

serum triglyceride level of leptin-function deficient (ob/ob) mice was completely normalized 

when crossed onto a CAR-/- background (Maglich et al., 2009). Notably, when maintained on a 

normal diet, treatment with TCPOBOP (0.3 mg/kg ip once daily for 14 days) resulted in a 50% 

increase in serum triglycerides in WT but not CAR-/- mice. This is in stark contrast to Gao’s 

observation where TCPOBOP (0.5 mg/kg ip once per week for 8 weeks) reduced serum 

triglyceride from 230 to 132 mg/dl in wild-type mice fed with a HFD regimen (Gao et al., 2009). It 

is possible that HFD-induced nutritional stress contributes significantly to the contradictory 

results in these studies, though factors such as the TCPOBOP treatment regimen and the 

genetic background of the mice used cannot be excluded. Additionally, the inherited species 

differences between human and mouse CAR may further complicate the dispute. In primary and 

immortalized human hepatocytes, activation of CAR promotes the expression of lipogenic genes 

such as SCD1 and Pnpla3 (Marmugi et al., 2016). Another study using human primary 

hepatocytes found that CAR activation, while inhibiting gluconeogenesis, did not affect the 
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expression of genes associated with hepatic lipogenesis (Lynch et al., 2014). Collectively, a 

correlation between CAR and energy homeostasis has been firmly established (Fig. 1). 

Numerous studies have demonstrated that activation or deactivation of CAR can disturb the 

balance of energy metabolism/expenditure. However, the exact role of CAR in metabolic 

disorders continues to be uncertain or even controversial. Information pertaining to humans in 

particular is limited.  

2.2. CAR in Cell Proliferation and Cancer 

The effect of CAR activation on mitogenesis has been the subject of intense inquiry since 

the discovery that CAR is responsible for PB- and TCPOBOP-induced liver hypertrophic and 

hyperplastic responses in mice (Wei et al., 2000). This topic is intriguing from two standpoints: 

whereas a hyperplastic response might lead to the development of cancer in certain 

circumstances, a regenerative response following severe tissue injury is often critical to survival. 

The essential role of CAR in PB- and TCPOBOP-mediated tumor promotion was initially 

established by using CAR-/- and WT mice, in that activation of CAR is associated with both 

induction of DNA replication and suppression of apoptosis (Yamamoto et al., 2004; Huang et al., 

2005; Phillips et al., 2007). Subsequent studies have further confirmed that a class of rodent 

CAR activators exhibit their tumor-promoting activities in CAR-dependent manners (Maeda et 

al., 2015; Tamura et al., 2015; Tamura et al., 2016; Okuda et al., 2017; Wang et al., 2017). 

Although the underlying molecular mechanisms by which CAR stimulates tumor promotion are 

not fully elucidated, accumulating evidence reveals that activation of CAR alters the expression 

of the growth arrest and DNA damage-inducible 45 β (GADD45β), the murine double minute 2 

(mdm2), the tubulin alpha 8 (TUBA8), the family with sequence similar 84, member A 

(FAM84A), and c-Myc which are all closely correlated with cell proliferation and oncogenic 

signaling (Huang et al., 2005; Blanco-Bose et al., 2008; Yamamoto et al., 2010; Kamino et al., 

2011a; Kamino et al., 2011b).  
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Recently, Dong and colleagues studied the relationship between mouse CAR activation and 

the Wnt/β-catenin pathway in the development of liver tumors (Dong et al., 2015). Although no 

evidence was found of direct interaction between CAR and β-catenin at the transcriptional level, 

results of the study showed that CAR activation prevented the senescence that would otherwise 

be triggered by Wnt/β-catenin activation over time and that the two act synergistically to 

promote liver cell proliferation and hepatocellular carcinoma (HCC) development. Another study 

by Braeuning et al., however, found that in Apc-/- mice (APC forms part of the protein complex 

that is essential to normal degradation of β-catenin), treatment with PB did not result in a 

persistent proliferative advantage (Braeuning et al., 2016). PB was shown to promote adenoma 

but inhibit carcinoma in liver cells of Apc-/- mice. Although mechanisms other than those directly 

involving CAR in the inhibition of HCC were not ruled out, the study points to the paradoxical 

properties of PB in tumor promotion and the need for additional investigation. Most recently, 

Tschuor and colleagues studied the regenerative effects of CAR in mouse liver following 

extreme (91% of liver volume resected), extended (86% resected), and standard (70% 

resected) hepatectomy (Tschuor et al., 2016). Marked impairment in mouse CAR activation 

following extended hepatectomy was observed, and liver dysfunction and lack of regeneration 

corresponded with similar phenomena in Car-/- mice that had undergone standard 

hepatectomy. Following administration of the mouse CAR activator TCPOBOP, survival was 

significantly improved in WT but not CAR-/- mice. As a regenerative response is essential to 

avoid potential liver failure after significant resection in the setting of tumor invasion or following 

transplantation with reduced-size liver grafts, therapeutic human CAR intervention may play a 

role in recovery from compromising liver surgery in the future (Clavien et al., 2010; Tschuor et 

al., 2016). 

MicroRNAs (miRNAs) are short noncoding RNAs that play important roles in the post-

transcriptional regulation of genes associated with various diseases, including HCC. miR-122, 
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the most abundant hepatic miRNA, has been established as a tumor suppressive miRNA in the 

liver (Coulouarn et al., 2009). Of note, the expression of miR-122 was markedly downregulated 

in C3H/HeN mice in vivo and HepG2 cells in vitro treated with PB (Shizu et al., 2012). 

Kazantseva et al. further demonstrated that activated CAR represses the expression of miR-122 

through direct competition with HNF4a for binding to the DR1 response element located 

upstream of the pri-miR-122 promoter, a mechanism by which CAR suppresses a number of 

other HNF4a target genes (Kazantseva et al., 2015). Using deep sequencing approaches, Hao 

et al. profiled the global miRNA expression patterns in livers from C57BL/6J mice treated with 

TCPOBOP or DMSO as vehicle control (Hao et al., 2016). Among the 51 miRNAs significantly 

altered by TCPOBOP treatment in this study, known oncogenic miRNAs, such as miR-148a, 

miR-let-7f, and miR-671, are upregulated, supporting the idea that CAR may modulate a 

network of miRNAs in facilitating mouse hepatocyte proliferation. In addition to CAR-mediated 

regulation of miRNA expression, the expression of CAR itself can also be repressed by miRNA 

such as miR-137, which was observed in cellular models of hepatocellular and colon cancers 

(Takwi et al., 2014). More in-depth analysis of the rather comprehensive roles of miRNA in 

CAR-dependent hepatocarcinogenesis is warranted.   

Another mechanism by which CAR may influence cancer development is through its 

involvement in circadian rhythm homeostasis. CAR expression has been shown to elevate 

during the night in mice, corresponding to their regular feeding patterns (Gachon et al., 2006). 

More recent studies have expanded on the link between CAR activity and circadian rhythms. 

For example, the period circadian regulator 2 protein (PER2) has been found to directly interact 

with CAR, with implications that have yet to be explored (Martini et al., 2017). Additionally, a 

shifted feeding schedule in rats (i.e., daytime rather than nighttime feeding) likewise caused a 

shift in CAR expression (de Vries et al., 2017). Significant disruption in circadian rhythms over 

time, in turn, has recently been demonstrated by Kettner and colleagues to provoke non-
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alcoholic fatty liver disease, fibrosis, and hepatocellular carcinoma in correlation with elevated 

bile acid and CAR levels in mice. Increased levels of CAR were found to be related to disruption 

in sympathetic nervous system signaling and peripheral tissue clock activity (Kettner et al., 

2016).  

Compared to what we have learned from rodent animals with regard to the role of CAR in 

cancer development, the function of CAR in human hepatocarcinogenesis continues to be 

controversial, and in-depth studies are limited. Indeed, although PB represents a prototypical 

CAR activator and known nongenotoxic carcinogen that promotes liver cancer in rodents, PB-

induced replicative DNA synthesis and hepatocellular proliferation in rodents were not observed 

in either cultured human hepatocytes in vitro or in chimeric mice with humanized liver in vivo 

(Elcombe et al., 2014; Yamada et al., 2014; Soldatow et al., 2016; Haines et al., 2018). 

Moreover, epidemiological studies have shown that PB and a number of PB-like nongenotoxic 

rodent carcinogens do not increase the incidence of liver tumors in humans, even after long 

therapeutic applications at doses producing plasma concentrations challenging those that are 

carcinogenic in rodents (Braeuning, 2014; La Vecchia and Negri, 2014). When the human CAR 

transcriptome was recently analyzed using WT and CAR-/- HepaRG cells, many cell 

proliferation-associated genes were upregulated in CAR-/- but not WT cells (Li et al., 2015a). 

Additionally, in human brain tumor stem cells, activation of CAR by CITCO (6-(4-

chlorophenyl)imidazo [2,1-beta][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime) was 

associated with cell cycle arrest and enhanced apoptosis both in vitro and in an in vivo 

xenograft model (Chakraborty et al., 2011). Collectively, these studies raise significant concerns 

regarding direct extrapolation of findings from rodents to humans, particularly with regard to the 

role of CAR in cancer development.    

2.3. Additional Endobiotic Functions of CAR 

In addition to the roles discussed above, CAR has important endobiotic metabolism 
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functions, including its regulation of bilirubin and bile acid processing genes (Huang et al., 2003; 

Wagner et al., 2005). A 2017 study addressing a potential role of CAR in prevention of 

cholesterol gallstone disease found that CAR activation by TCPOBOP in lithogenic diet-fed mice 

prevented the development of cholesterol gallstones (Cheng et al., 2017). Furthermore, 

although primarily studied in the liver, CAR has also been investigated in other organs, such as 

brain and intestine. Boussadia et al. recently explored the role of CAR in pathophysiological 

brain processes and found that CAR-/- mice displayed inferior memory function and greater 

levels of anxiety, as indicated by behavioral tests, when compared with WT mice (Boussadia et 

al., 2016). Electroencephalographic changes in CAR-/- mice were found to correlate with 

memory impairment, and microvessels exhibited morphological changes that were suggestive of 

inflammatory processes. Additionally, when a seizure-inducing neurotoxin was peripherally 

administered, CAR-/- mice experienced quicker-onset and more prolonged seizure episodes 

than did WT mice, reinforcing the increased vascular permeability suggested by other 

experimental results (Boussadia et al., 2016). The effects of CAR in intestinal tissue were also 

studied by Hudson and colleagues recently. The expression of CAR in inflamed, non-ulcerated 

intestinal mucosal tissue from patients with ulcerative colitis and Crohn’s disease was found to 

be markedly reduced when compared with corresponding tissue from healthy donors, results 

that were duplicated in intestinal mucosal samples from mice with chemically-induced 

inflammation (Hudson et al., 2017). When intestinal tissue was collected from CAR-/- mice after 

a week’s recovery time following chemically-induced mucosal damage, mucosal tissue had 

failed to recover to the extent observed in WT mice in terms of both damage and inflammation. 

CAR activation by CITCO in Caco-2 intestinal epithelial cells was found to increase the 

migratory distance of these cells, an effect that was correlated with increased p38 MAP kinase 

activation, and to aid wound closure while having no effect on cell proliferation. Most recently, 

Choi et al. demonstrated an interesting kidney-liver cross-talk in response to acute kidney injury, 

where TCPOBOP alleviates serum IL-6 elevation induced by renal ischemia-reperfusion in a 
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CAR-dependent manner (Choi et al., 2018).  

Taken together, these findings demonstrate that the role of CAR has extended well beyond 

its traditional function in xenobiotic metabolism and transport. Endogenous roles involving 

energy homeostasis, cancer development and prevention, and tissue integrity and regeneration 

continue to be elucidated. New insight into the mechanisms by which CAR exerts its effects and 

the precise conditions in which it does so will likely lead to therapeutic advances in many 

pathological conditions. 

 

3. Pregnane X receptor 

PXR, also known as the steroid and xenobiotic receptor (SXR) and pregnane activated 

receptor (PAR), has been firmly established as the master regulator of the expression of 

numerous phase I and II DMEs and drug transporters, with CYP3A4 as its most investigated 

and prototypical target gene in humans (Kliewer et al., 1998; Sueyoshi and Negishi, 2001). 

Owing to its broad ligand specificity, perturbation of PXR activity can alter the bioavailability, 

absorption, excretion, and overall disposition of xenobiotics, leading to potentially significant 

drug-drug, drug-herbal, and drug-environment interactions that impact vital medical treatments 

(Lehmann et al., 1998; Kliewer and Willson, 2002; di Masi et al., 2009).  

Originally cloned in 1998 from a mouse fragment in the EST database (Kliewer et al., 1998), 

or by screening a human gene library to identify homologs of the Xenopus benzoate X receptor 

(Blumberg et al., 1998), PXR is classified in the NR1i nuclear receptor family as a ligand-

dependent transcription factor. PXR is predominantly expressed in the liver and intestine, which 

are routinely exposed to numerous xenobiotics, where it functions as a signaling molecule for 

the generation of metabolic byproducts of exogenous and endogenous compounds (Kliewer et 

al., 1998; Lehmann et al., 1998; Jones et al., 2000). Many NRs are known for their 3-stranded 

-sheet ligand-binding pocket; however, PXR exhibits a 5-stranded -sheet ligand-binding 
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pocket that is malleable and largely hydrophilic, permitting the binding of a broad array of 

structurally diverse chemicals including drugs, endogenous metabolites, and exogenous 

compounds (Watkins et al., 2001; Ekins and Schuetz, 2002; Ekins et al., 2009). Similar to CAR, 

inactivated PXR resides in the cytoplasm of hepatocytes of untreated mice, where it 

translocates to the nucleus when bound to an agonistic ligand, pregnenolone 16α-carbonitrile 

(PCN) (Kawana et al., 2003; Squires et al., 2004). Mechanistically, nuclear translocation of PXR 

requires an intact NLS, which resides within the DBD of PXR (Squires et al., 2004). Although 

ectopically expressed CAR and PXR spontaneously accumulate in the nucleus of immortalized 

cell lines such as HepG2 cells, without agonist stimulation, nuclear-localized PXR remains 

inactive, whereas nuclear translocation alone is sufficient to activate CAR (Kawamoto et al., 

1999; Kawana et al., 2003). Upon agonist binding, the PXR/RXR heterodimer recruits 

coactivators such as steroid receptor coactivator 1 and triggers the expression of its target 

genes (Kliewer et al., 1998). While CAR and PXR both regulate numerous DMEs and 

transporters, they exhibit different preferential regulation over these genes. This is partly due to 

the differential binding affinities of CAR and PXR to AG(G/T)TCA repeats in the promoters of 

these genes (Xie et al., 2000; Faucette et al., 2006). Together, PXR and CAR form a defensive 

mechanism against xenobiotic exposures by coordinately regulating a pleiotropic array of 

hepatic genes encoding various DMEs and transporters. 

In addition to its well-characterized roles in xenobiotic metabolism and detoxification, 

evidence has shown that PXR also plays important roles in energy metabolism, inflammation, 

and cell proliferation. Notably, while PXR and CAR exhibit similar roles in xenobiotic disposition 

by coordinating the inductive expression of DMEs and transporters, PXR appears to differ 

significantly from CAR in its non-classical regulatory roles, including energy metabolism and 

cancer development. 

3.1. PXR and Energy Homeostasis 
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Previous studies reveal that activation of PXR by PCN results in decreased blood glucose 

levels in mice, an effect attributable to PXR-mediated repression of genes such as PEPCK1 and 

G6Pase that are pivotal to hepatic gluconeogenesis (Bhalla et al., 2004; Kodama et al., 2004). 

In human hepatocarcinoma Huh7 cells overexpressing transfected human PXR, addition of 

cAMP induced the expression of G6Pase and PEPCK mRNAs 13- and 20-fold, respectively, 

while the induction of these genes was markedly repressed by rifampicin, the prototypical 

activator of human PXR (Kodama et al., 2007). Mechanistically, PXR acts as a corepressor of 

FOXO1 and FOXA2 and downregulates FOXO1-mediated insulin response sequence (IRS) 

activation and transcription of gluconeogenic genes (Kodama et al., 2004). GST pull-down and 

co-immunoprecipitation assays demonstrated that PXR directly binds CREB, a cAMP-response 

element-binding protein, and represses cAMP-mediated expression of G6Pase thereafter 

(Kodama et al., 2007). Further, this study showed that the binding affinity between PXR and 

CREB was strengthened by PCN treatment, which led to a decreased binding of CREB to the 

G6Pase promoter in mice. Additional studies investigating the effect of PXR on bile acid 

synthesis and gluconeogenesis in HepG2 cells found that human PXR interacts with the 

coactivator PGC1α in the presence of rifampicin (Bhalla et al., 2004). This ligand-dependent 

PGC1-PXR interaction prevents PGC1α from binding to HNF4α and forms a functionally 

inhibitory cross-talk between PXR and HNF4α, leading to the repression of PEPCK1.  

In contrast with aforementioned findings suggesting a potential glucose-lowering benefit of 

PXR activation in mice, clinical studies have indicated that treatment with rifampicin increases 

blood glucose levels in both tuberculosis patients and healthy volunteers (Takasu et al., 1982; 

Rysa et al., 2013). Such clinical observations correlate with a recent in vitro study using human 

primary hepatocytes and HepG2 cells stably expressing human PXR, where activation of PXR 

by rifampicin and a statin significantly induced the expression of PEPCK1 and G6Pase in both 

hepatic cell systems  (Gotoh and Negishi, 2014; Gotoh and Negishi, 2015). The 
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serum/glucocorticoid regulated kinase 2 (SGK2) that was also upregulated by human PXR 

activators appears to be essential for this PXR-mediated induction of gluconeogenesis, and the 

drug-PXR-SGK2 signaling requires the recruitment of the protein phosphatase 2Cα (PP2Cα) by 

ligand-activated PXR to dephosphorylate SGK2 at Thr193, which in turn facilitates PXR-mediated 

transactivation of genes encoding gluconeogenesis, including PEPCK and G6Pase. 

Interestingly, this drug-PXR-SGK2 signaling is not present in mice, which may explain some of 

the discrepancies observed between murine and human studies (Gotoh and Negishi, 2014; 

Gotoh and Negishi, 2015). Most recently, Gotoh et al. further demonstrated that rather than drug 

challenges, a low level of glucose induced the phosphorylation of PXR at Ser350 and enhanced 

gluconeogenesis in cultured HepG2 cells (Gotoh et al., 2017). Immunoprecipitation and in vitro 

kinase assays revealed that the vaccinia related kinase 1 (VRK1), a serine/threonine kinase, is 

responsible for the phosphorylation of PXR at Ser350 under low glucose conditions, which 

enabled the phosphorylated PXR to scaffold PP2Cα for subsequent dephosphorylation of SGK2 

at Thr193. Knockdown of VRK1, on the other hand, markedly repressed the phosphorylation of 

PXR-Ser350, increased SGK2-Thr193, and nearly abolished the expression of PEPCK in HepG2 

cells cultured under low glucose. Importantly, this low glucose-stimulated VRK1-PXR-PP2C-

SGK2 signaling was also observed in mice under fasting conditions, suggesting that this 

signaling pathway may represent a novel feedback mechanism in response to low glucose that 

is conserved in both humans and mice. In another study, Oladimeji et al. observed that high 

glucose increased the expression and activity of PXR in HepG2 cells and that this induction was 

partially reversed by the activation of AMPK, suggesting that PXR activity can be modulated by 

the energy status of the cells (Oladimeji et al., 2017).  

Adding yet another layer of complexity to our understanding of the role of PXR in glucose 

homeostasis, recent studies revealed that PXR also alters the uptake and utilization of glucose. 

Studies in mice and rats found that activation of PXR with PCN downregulates the expression of 
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glucose transporter 2 (GLUT2), the transporter responsible for glucose uptake into hepatocytes 

during the fed state, and glucokinase (GCK), which deactivates G6Pase by phosphorylation 

(Ling et al., 2016; Hassani-Nezhad-Gashti et al., 2018). Collectively, activation of PXR in 

various in vivo and in vitro models exhibiting different types of metabolic function has led to 

mixed outcomes, with PXR activation improving glucose tolerance in some models while 

worsening glucose homeostasis in others (Hakkola et al., 2016). Multiple confounding factors 

including genetic variations and experimental conditions may contribute to the observed 

discrepancies. Clearly, the effects of PXR activation on glucose tolerance in humans require 

further evaluation. 

Unlike the beneficial effects of CAR activation on lipid homeostasis that have been reported 

by several groups, activation of PXR has been shown to enhance lipogenesis while decreasing 

lipid oxidation, promoting a fatty liver phenotype (Zhou et al., 2006; Nakamura et al., 2007; Bitter 

et al., 2015). Using PXR-/- and WT-mice, Nakamura et al. reported that treatment with PCN 

resulted in downregulation of CPT1A (β-oxidation) and mitochondrial 3-hydroxy-3-

methylglutarate-CoA synthase 2 (Hmgcs2; ketogenesis) but upregulation of the stearoyl-CoA 

desaturase 1 (lipogenesis) in a PXR-dependent manner (Nakamura et al., 2007). At the 

molecular level, PXR affects the expression of these genes at least partly through cross-talk 

with the insulin response forkhead factor FoxA2. Unexpectedly, this study also found that 

untreated PXR-/- mice developed severe hepatic steatosis accompanied with induction of 

lipogenesis and repression of fatty acid β-oxidation reminiscent of those associated with the 

pharmacological activation of PXR (Nakamura et al., 2007). Whether unidentified endogenous 

ligands may contribute to this contradictory observation is largely unknown.  

Studies using a combination of human PXR transgenic, PXR-/-, and WT mice found that 

both genetic and pharmacological activation of PXR in the liver resulted in elevated hepatic lipid 

accumulation, which is associated with induction of the fatty acid translocase protein CD36 
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without activation of the lipogenic transcriptional factor sterol regulatory element-binding protein-

1c (Zhou et al., 2006). On the other hand, genetic PXR ablation protected mice from HFD- and 

genetically induced obesity, hepatic steatosis, and insulin resistance (He et al., 2013). In 

addition, Ma et al. reported that activation of PXR by PCN prevents HFD-induced obesity in 

AKR/J mice (Ma and Liu, 2012). Potential factors contributing to this discrepancy may include 

different genetic backgrounds of mice used, C57BL/6J vs AKR/J, and PCN treatment dosage 

and schedules. Indeed, PXR-mediated alteration of lipid homeostasis may exhibit tissue, cell 

type, and species specificities. Activation of PXR in human primary hepatocytes with rifampicin 

did not induce CD36 expression, and lipid accumulation in the hepatocytes was due to 

increased fatty acid synthesis and reduced fatty acid β-oxidation instead of increased free fatty 

acid uptake as observed in the mouse models (Moreau et al., 2009). Another possible 

mechanism proposed for PXR-dependent increases in hepatic lipid accumulation is the 

induction of the novel PXR target gene SLC13A5, an uptake transporter that imports citrate from 

the circulation into the hepatocyte, where it facilitates de novo synthesis of lipids and cholesterol 

(Li et al., 2015b). Collectively, activation of PXR quite consistently leads to increased hepatic 

lipid accumulation, while its effects on glucose balance are rather controversy (Fig. 2). The 

differences in mechanisms between preclinical species and humans require that caution be 

taken when attempting to define the physiological relevance of findings in animal models. 

3.2. PXR in Cancer and Cell Proliferation 

PXR-mediated alterations in drug disposition have been known to play a significant role in 

chemotherapy resistance, as many anticancer agents are substrates of DMEs and efflux 

transporters that can be upregulated by PXR activation (Zhuo et al., 2014; Oladimeji and Chen, 

2018). Although PXR in the liver and intestine accelerates drug clearance in general, tumor-

specific expression of PXR becomes an additional barrier to the therapeutic efficacy of 

anticancer agents (Mani et al., 2005; Chen et al., 2007; Chen et al., 2012). This is exemplified 
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by a recent study investigating the therapeutic efficacy of sorafenib in HCC treatment, where 

sorafenib was found to enhance its own clearance via CYP3A4 and P-glycoprotein induction in 

HCC by the activation of PXR (Feng et al., 2018). Outside of its traditional role of xenobiotic 

detoxification, accumulating evidence reveals that PXR can also regulate the expression of 

multiple genes associated with cell apoptosis and proliferation, which play pivotal roles in cancer 

progression (Masuyama et al., 2007; Gupta et al., 2008; Chen et al., 2009; Pondugula et al., 

2016).  

Mounting cell-based evidence thus far supports that PXR plays a pleiotropic role in cell 

proliferation and cancer development in a cell-type specific manner. Treatment of hepatocytes 

with dexamethasone, a PXR activator, inhibited spontaneous apoptosis by upregulating B-cell 

leukemia 2 (Bcl-2), an antiapoptotic protein that inhibits p53-mediated apoptosis signaling, and 

this phenomenon was also confirmed using other PXR agonists in both rat and human 

hepatocytes (Bailly-Maitre et al., 2001; Zucchini et al., 2005). Additionally, PXR inhibited 

apoptosis in LS180 colorectal adenocarcinoma cells by inducing Bcl-2 and MCL-1, another 

antiapoptotic protein, while downregulating proapoptotic proteins such as Bcl-2 antagonist/killer 

1 and p53 (Zhou et al., 2008). Further studies probing the mechanistic interactions between 

PXR and p53 found that WT-p53 can directly bind to PXR, and heterodimerization of PXR and 

p53 appears to form a mutually repressive cross-talk through which each inhibits the other’s 

transcriptional activity in HCT116 and LS180 colon cancer cells. This mutual inhibition protects 

them against chemotherapeutic-induced cell death by decreasing apoptosis and increasing 

malignant transformation (Elias et al., 2013; Robbins et al., 2016). In addition to its role in liver 

and colon cancers, PXR is also expressed in prostate cancer, breast cancer, and a number of 

other tumor tissues, with differential biological function and tissue and cell type/context-specific 

consequences (Miki et al., 2006).  

In the case of colorectal cancers, Wang et al. reported that activation of PXR is sufficient to 
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enhance neoplastic characteristics of LS174T cells and human primary colon tumor cells both in 

vitro and in xenografted mice in vivo, and pointed out that mechanistically this may involve a 

PXR-dependent induction of FGF19 expression in cancer (Wang et al., 2011). Using similar 

approaches, Ouyang et al., however, observed a PXR-mediated anticancer activity in HT29 

cells, another colorectal cancer cell line with relatively low expression of PXR. Stable 

transfection of PXR in HT29 cells led to repressed cell proliferation, migration, and xenograft 

growth, which is accompanied by cell-cycle arrest, elevated p21 expression, and inhibition of 

E2F1 (Ouyang et al., 2010). Interestingly, this report also indicated that expression of PXR is 

reduced in human colon cancer tissues, albeit using a relatively small sample size (Ouyang et 

al., 2010). A tumor-suppressive role of PXR was further supported by another report where 

intestine-specific activation of PXR by rifaximin significantly reduced azoxymethane/dextran 

sulfate sodium-induced colon cancer in human PXR transgenic but not WT or PXR-/- mice, 

possibly through the PXR-NF-kB axis (Cheng et al., 2014).  

In addition to cancer development, PXR has been shown to be important in liver 

regeneration by augmenting the proliferation of hepatocytes (Dai et al., 2008; Elcombe et al., 

2012). In fact, PXR was necessary for full liver regeneration in mice after a partial hepatectomy, 

with the PXR-/- mice exhibiting severe inhibition of hepatocyte proliferation 3 days after 

hepatectomy surgery (Dai et al., 2008). PXR-/- mice showed inactivation of signal transducer 

and activator of transcription protein 3 (STAT3) 5 days post-surgery, which was the most likely 

cause of hepatocyte quiescence (Dai et al., 2008). While activation of PXR in WT mice did not 

enhance hepatocyte proliferation, co-treatment of PCN with activators of either CAR or PPARα 

led to a synergistic enhancement of hepatocyte proliferation (Shizu et al., 2013). Collectively, 

activation of PXR perturbs the balance of cell proliferation and apoptosis in cell-, tissue-, and 

species-specific manners without an overarching phenotype, making the study of PXR in 

different cancer types complex. 
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3.3. Additional Non-Traditional Functions of PXR 

Studies have shown that PXR is also expressed in immune cells, such as T and B 

lymphocytes, and in the skin of mice and humans, where perturbation of PXR expression and 

activity alters the immune response (Dubrac et al., 2010; Haslam et al., 2013; Elentner et al., 

2015). Many patients with atopic dermatitis have compromised immune barrier function, which 

leads to an increase in the penetration of lipophilic pollutants (Oetjen et al., 2018). This 

penetration has been shown to trigger PXR activation in keratinocytes and a subsequent hyper-

responsive immune response, further impairing the barrier function (Oetjen et al., 2018). 

Specifically, Elenter et al. reported that transgenic mice expressing constitutively activated 

human PXR display increased transepidermal water loss, abnormal stratum corneum lipids, 

focal epidermal hyperplasia, and increased expression of local T cells (Elentner et al., 2018).  

The same compromise in barrier function exhibited in atopic dermatitis is also observed in 

the GI tract in diseases such as inflammatory bowel disease (IBD) and Crohn’s disease, and 

PXR plays a role in both of these diseases by increasing epithelial permeability (Terc et al., 

2014). Additionally, PXR has been shown to regulate the intestinal epithelial wound healing 

response, allowing mutations to reduce the healing response, leading to an increase in IBD risk 

factors. This has been shown by using PXR agonists as protective agents that prevent intestinal 

inflammation from occurring (Terc et al., 2014). It is suggested that PXR plays a role in the 

healing response by modulating gene transcription, thereby upregulating genes that are related 

to metabolic functioning, while hindering inflammatory genes (Mencarelli et al., 2010). Beyond 

the role of PXR in the disease state of the gastrointestinal tract, PXR activation plays a major 

role in the maintenance of homeostasis of bile acids, which can affect the potential progression 

of many cholesterol-related diseases.  

As described throughout this review, many xenobiotics and endobiotics activate PXR, 

leading to the regulation of key enzymes that have been implicated in a wide array of 
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physiological activities. There is an abundance of knowledge on the role of PXR in xenobiotic 

metabolism, and recently the evidence has shifted to the more critical nontraditional role that 

PXR plays in the regulation of endogenous functions which has led to interest in uncovering the 

magnitude of PXR’s influence. However, more information is needed to determine whether PXR 

may eventually be used as a target to prevent and treat diseases.  

 

3. Conclusion 

Over the past twenty years or so, significant advances have been achieved in our 

understanding of the roles of XRs in the transcriptional regulation of genes involved in 

xenobiotic absorption, distribution, metabolism, excretion, and toxicology. Accumulating 

evidence shows that these traditional xenobiotic sensors also play pivotal roles in modulating 

energy homeostasis, cell proliferation, cell migration, apoptosis, inflammation, and immune 

response, which may eventually alter the clinical consequences of metabolic disorders, obesity, 

and diabetes, as well as various cancers. It is evident now that although XRs such as CAR and 

PXR continue to be appreciated as master regulators that control xenobiotic disposition and 

detoxification, newly heightened researches are focusing on 1) the identification of previously 

unknown physiological/pathophysiological functions of XRs, 2) understanding the molecular 

mechanisms underlying the non-canonical roles of XRs, and 3) exploring XRs as potentially 

novel therapeutic targets for disease conditions such as metabolic disorders and cancers. We 

have witnessed rapid progression in our understanding of the endobiotic roles of CAR and PXR 

and in our ability to decipher the mechanisms of their activation. Unlike typical ligand-dependent 

nuclear receptors, CAR activity can be altered by numerous cellular signaling pathways, which 

themselves are often associated with important physiological and pathophysiological conditions. 

Notably, in animal models, while activation of both CAR and PXR benefits diabetic conditions by 

repressing hepatic gluconeogenesis, the two XRs display contrasting effects on lipogenesis and 
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fatty acid β-oxidation. Given that many drugs are dual activators of both CAR and PXR, the 

potential clinical application of these findings is rather complicated and requires further 

elucidation.   

One key point discussed in this article is that both CAR and PXR present significant cell-

type, tissue, and species specificities with regard to their non-canonical functions. For instance, 

while activation of PXR enhanced the neoplastic characteristics of LS174T cells, it repressed 

the proliferation of HT29 cells both in vitro and in xenografted mice in vivo. Pharmacological 

activation of PXR resulted in conflicting effects on HFD-induced fatty liver in mice with C57BL/6J 

versus AKR/J genetic background. To date, the majority these new findings have come from 

experiments conducted in rodent animal models, and direct extrapolation of these data to 

humans can be misleading and risky. It is rather convincing now that activation of CAR and PXR 

in mice enhances cell proliferation and tumor progression, and many of their agonists are well-

known tumor promoters in rodents. Nevertheless, the role of these XRs in human cancer 

development is inconclusive in general and sometimes contradictory to the findings in rodent 

animals. In the case of CAR, both PB and TCPOBOP exhibit potent tumor-promoting effects in 

mice in a CAR-dependent manner. However, clinical use of PB over an extended period of time 

has never been associated with an increased incidence of cancer in humans. It is worth noting 

that, in addition to the known species differences, a lack of in-depth investigation into human XR 

function in appropriate models adds to the uncertainty and contradictory outcomes obtained 

thus far. It is anticipated that the use of novel 3D physiologically relevant human pre-clinical 

models, such as hepatocyte spheroid cultures, organ-on-chip platforms, and 3D bioprinted 

human tissues, will provide alternative approaches to overcome these challenges. Collectively, 

exciting new discoveries of XR-mediated endobiotic effects have been made through flourishing 

new studies. Extrapolation of findings from animal studies is hindered by the rather paradoxical 

effects observed between human and rodent CAR and PXR on energy homeostasis and cell 
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proliferation. In order to fully appreciate the clinical impact of these XRs in diseases such as 

metabolic disorders and cancers, more intensive human studies are warranted in the future. 
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Figure Legends 

Figure 1. Effects of CAR Activation on Energy Homeostasis. Schematic illustration of how 

CAR activation affects energy metabolism and balance. Activation of CAR by agonists or caloric 

restriction leads to the up- and down-regulation of a cluster of genes associated with 

gluconeogenesis, lipogenesis, -oxidation, and energy expenditure by altering the activities of 

specific transcription factors such as PPARα, HNF4α, FOXO1, and PGC-1α. 

 

Figure 2. Effects of PXR Activation on Energy Homeostasis. Schematic illustration of how 

PXR activation affects energy metabolism and balance. Activation of PXR by agonists or low 

glucose results in up- and down-regulation of a cluster of genes associated with 

gluconeogenesis, lipogenesis, and -oxidation by altering the activities of specific transcription 

factors such as HNF4α, FOXO1, FOXA2, PGC-1α, and CREB, or protein phosphatases/kinases 

such as PP2Cα, and SGK2. 
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