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3. Abstract  

Lysosomal sequestration may affect the pharmacokinetics, efficacy and safety of new basic 

lipophilic drug candidates potentially impacting their intracellular concentrations and tissue 

distribution. It may also be involved in drug-drug interactions, drug resistance or 

phospholipidosis. Currently, however, there are no assays to evaluate the lysosomotropic 

behaviour of compounds in a setting fully meeting the needs of drug discovery. We have 

therefore integrated a set of methods to reliably rank order, quantify and calculate the extent 

of lysosomal sequestration in rat hepatocytes. An indirect fluorescence-based assay 

monitors the displacement of the fluorescence probe LysoTracker™ Red by test compounds. 

Using a lysosomal specific evaluation algorithm allows to generate IC50 values at lower than 

previously reported concentrations. The concentration range directly agrees with the 

concentration dependency of the lysosomal drug content itself directly quantified by LC-

MS/MS and thus permits a quantitative link between the indirect and the direct trapping 

assay. Furthermore, we have determined the full pH profile and corresponding volume 

fractions of the endo-/lysosomal system in plated rat hepatocytes, enabling a more accurate 

in silico prediction of the extent of lysosomal trapping based only on pKa values as input 

allowing early predictions even prior to chemical synthesis. The concentration dependency, 

i.e. the saturability of the trapping can then be determined by the IC50 values generated in 

vitro. Thereby, a more quantitative assessment of the susceptibility of basic lipophilic 

compounds for lysosomal trapping is possible.  
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4. Introduction 

Many drugs show lipophilic properties in combination with moderate to high basicity. This 

property combination is often associated with pH-driven lysosomal sequestration which can 

have a strong impact on the distribution, efficacy and safety of such drugs as it may lead to 

high concentrations in lysosome-rich tissues such as lung, liver, kidney or spleen (MacIntyre 

and Cutler, 1988a; Ndolo et al., 2012). In order to undergo lysosomal sequestration a 

compound needs to (I) be membrane permeable, and (II) have a basic moiety that is 

ionisable at acidic pH. Indeed, the major driving force into the lysosome is the pH gradient 

between the neutral cytosol (pH 7.0 – 7.2) (Berezhkovskiy, 2011; Hallifax and Houston, 

2012; Poulin et al., 2012) and the acidic lysosomal matrix (pH 4.5 - 5) (Feng and Forgac, 

1992; Kornhuber et al., 2010; Mindell, 2012). While being able to enter the lysosome via 

passive diffusion, the acidic environment within the lysosome causes a protonation of basic 

groups. This ionisation converts the formerly neutral molecule into a charged molecule which 

significantly reduces its permeability across the lipid bilayer resulting in a “trapping” of the 

cationic form (). Besides the lysosome, any cellular compartment with a lower pH than the 

cytosol (e.g. early and late endosomes) is in principle eliciting this trapping mechanism. For 

simplification, all acidic cellular compartments are herein after referred to as lysosomes. 

Despite the typically minor volume of < 2 % of the cellular volume (with exceptions in certain 

cell types, e.g. macrophages of up to 8% (Ufuk et al., 2015)), the contribution to cellular drug 

uptake can be significant as trapping can theoretically lead up to 160,000x fold higher drug 

concentrations within the lysosome relative to the cytosol (MacIntyre and Cutler, 1988a; 

MacIntyre and Cutler, 1988b). Besides contributing to distribution into lysosome-rich tissues, 

lysosomal sequestration also affects the intracellular localisation of drugs. This may be 

beneficial if the therapeutic target is inside of the lysosome, but in most cases the drug is 

actually drawn away if the site of action is in the cytosol or cell nucleus, thereby influencing 

its efficacy. In addition, excessive lysosomal accumulation may affect drug safety by 

impairing the normal physiological function of lysosomes. Indeed, this is one of the main 

mechanisms of drug-induced phospholipidosis (Reasor et al., 2006), Furthermore, lysosomal 
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trapping has also been implicated in drug-drug interactions. Due to the limited trapping 

capacity of lysosomes, two co-administered lysosomotropic drugs may compete for 

lysosomal accumulation which in turn could lead to elevated cytosolic concentrations and 

hence may elicit adverse drug effects, however, thus far, this was seen only in preclinical 

studies and at rather high doses (Daniel and Wojcikowski, 1999b; Funk and Krise, 2012).  

Finally, lysosomal trapping has also been associated with cancer drug resistance. Sunitinib 

for instance can cause augmented lysosome biogenesis in certain cancer cells. This in turn 

may lead to increased lysosomal sequestration which then may result in inadequate target 

exposure after continuous treatment with lysosomotropic anticancer drugs. This has been 

reported as mechanism for cancer resistance for several approved drugs and is also 

implicated to result in a cross-resistance of lysosomotropic agents (Gotink et al., 2015; 

Zhitomirsky and Assaraf, 2016). Looking at the potential impact of these implications, early 

information on lysosomal trapping in drug discovery will increase our understanding of drug 

distribution both at the level of body tissues and the subcellular disposition, thereby 

supporting the selection of new drug candidates with improved efficacy and safety profile in 

relation to their intracellular distribution.  

In this paper we present a set of methods that were established to assess the lysosomotropic 

properties of basic compounds in drug discovery with particular suitability for lead 

optimisation and candidate selection and profiling. We have developed two complementary 

experimental methods an indirect fluorescence-based method that utilises the fluorescent 

probe LysoTracker™ Red DND-99 (LTR) to screen and rank order compounds for lysosomal 

trapping, and a direct quantification method using LC-MS/MS to quantify the intralysosomal 

versus cellular drug content. We have furthermore derived a quantitative link between both 

methods. Together with an in-depth characterisation of the endo-/lysosomal system in 

cultivated rat hepatocytes we were able to accurately predict the hepatocellular drug 

distribution to lysosomes. 
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5. Materials & Methods 

Chemicals and Reagents 

Ammoniochloride, Chloroquine, diclofenac, fluoxetine, monensin sodium and imipramine 

were purchased from Sigma-Aldrich (St. Louis, MO) and propranolol was purchased from 

Research Biochemical International (Natick, MA). Olaparib was obtained from Active 

Biochem LTD (Hong Kong, China). LysoTracker™ Red DND-99, Lysosensor™ Yellow/Blue 

DND-160 and Hoechst 33342 were purchased from Life Technologies (Carlsbad, CA). 

Sodium chloride, potassium chloride, HEPES, EGTA, calcium chloride were purchased from 

Sigma-Aldrich (St. Louis, MO). Acetonitrile and methanol were purchased from Honeywell 

Specialty Chemicals Seelze GmbH, Seelze, Germany. 

Isolation of rat hepatocytes 

Fresh hepatocytes were isolated from male Han:Wistar rats (Janvier Labs, Le Genest-Saint-

Isle, France). Animals were anesthetized via i.p. injection of xylazine/ketamine (1:1). The 

liver was perfused in situ with 200 mL buffer 1 (4.2 % NaCl, 0.3 % KCl and 1.2 % HEPES 

and 0.19 % EGTA in bidistilled water., pH 7.2) and subsequently with 180 mL buffer 2 (3.9 % 

NaCl, 0.5 % KCl, 0.7 % CaCl2, 2.4 % HEPES in bidestilled water, pH 7.2) containing 13500 U 

of collagenase type II (Worthington Biochemical Corporation, Lakewood, NJ) via the portal 

vein. After perfusion the liver was excised, and the tissue was disassociated by scraping with 

forceps. The hepatocytes were transferred into hepatocyte medium (20 mL glutamine (Gibco, 

Grand Island, NY), 500 µL insulin (Sigma-Aldrich, St. Louis, MO), 20 µL glucagon (Sigma-

Aldrich, St. Louis, MO) in 500 mL William’s Medium E (Sigma-Aldrich, St. Louis, MO) and 

purified via Percoll™ (Sigma-Aldrich, St. Louis, MO) centrifugation according to Kreamer et 

al. (1986) with hepatocyte medium as the washing solution. In the final step the purified 

hepatocytes were diluted in hepatocyte medium containing 5% fetal calf serum (Sigma-

Aldrich, St. Louis, MO). 
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Indirect fluorescence-based assay for lysosomotropism and cytotoxicity assessment 

Drug stock solutions for the assay were prepared in dimethyl sulfoxide (Sigma-Aldrich, St. 

Louis, MO) from which the loading solutions were diluted with William’s medium E in a 

concentration range of 0.5 - 100 µM for each drug. LysoTracker™ Red DND-99 to stain 

lysosomes and Hoechst 33342 to assess cytotoxic drug effects were added to each loading 

solution in final concentrations of 50 nM and 4 µg/mL, respectively. Negative control 

contained no drug and positive control contained 25 mM NH4Cl to elevate lysosomal pH, 

abolishing the pH gradient and thereby the accumulation of LTR. As the cell system, freshly 

isolated rat hepatocytes were seeded (200 000 cells/well) in clear 24-well Biocoat Collagen I 

plates (Corning Incorporated, Corning, NY) and allowed to adhere for 24 h at 37°C, 5% CO2. 

Each well was washed twice with prewarmed PBS (Gibco, Grand Island, NY) and cells were 

subsequently incubated with 300 µL loading solution for 40 min² at 37°C, 5% CO2. The 

loading solution was removed and replaced with 500 µL of fresh William’s Medium E. 

Fluorescence was then immediately captured with an Axiovert 200 (Zeiss, Jena, Germany) 

equipped with an AxioCam MRm. Image acquisition was performed at six random locations 

within each well in the Rhodamine and the DAPI channel. The used microscope settings are 

specified in Table 1. The lysosomotropic character of each drug was determined over the 

whole concentration range in duplicates. The assay was replicated twice in a reduced form 

for concentrations relevant for lysosomal trapping, resulting in n = 6 measurements. 

Data analysis and evaluation 

Fluorescence images were analysed with Axiovision 4.8.2. The cell viability was evaluated by 

counting cell nuclei in the DAPI channel, with a decreasing number of nuclei indicating 

cytotoxic drug effects. The assessment of lysosomal drug sequestration by LTR fluorescence 

reduction was analysed in the rhodamine channel. In the fluorescence images each pixel has 

a possible intensity from 0 to 4096. The brightness of lysosomes was manually identified and 

two thresholds were applied.1 The entire lysosomal system was analysed by measuring any 

fluorescence intensity ≥ 500, discarding the background/cytosol and serving as a surrogate 

for the cell number in the images. For lysosomal peak intensities the second threshold of ≥ 
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1000 was used.  visualizes LTR intensities with applied thresholds of a control cell and a 

schematic visualization of applies thresholds. Due to the variability of the number of cells per 

image the proportion (plyso.) of lysosomal peak intensities (∑ I≥1000) in the lysosomal system (∑ 

I≥500) was calculated for every image. To detect alterations in the lysosomal LTR fluorescence 

it was normalized to the plyso. of the respective negative controls (𝑝̅𝑙𝑦𝑠𝑜.𝑛𝑒𝑔. 
): 

𝑝𝑙𝑦𝑠𝑜./𝑛𝑜𝑟𝑚. =
∑ 𝐼 ≥1000

∑ 𝐼 ≥500
∗ 𝑝̅𝑙𝑦𝑠𝑜.𝑛𝑒𝑔.

−1

 
(1) 

Results of all measurements were pooled and a logistic regression on 𝑝𝑙𝑦𝑠𝑜./𝑛𝑜𝑟𝑚. against 

compound concentration was performed in Origin® 2018 or Sigmaplot® 13 to generate IC50 

values. 

Direct quantification of lysosomal drug content 

To identify the relation between LTR displacement and lysosomal drug accumulation, 

propranolol and imipramine accumulation was measured (I) in control hepatocytes and (II) 

hepatocytes with inactive lysosomes as well as (III) in hepatocytes additionally treated with 

LTR to evaluate any interaction on drug accumulation. Each compound was tested three 

times in hepatocytes of three different rats over a concentration range of 1-100 µM (I) 

containing the test compound only , additionally containing (II) either 25 µM Monensin or (III) 

50 nM LTR . Freshly isolated rat hepatocytes were cultured and plated as described above. 

The plates were washed twice with prewarmed PBS and cells were incubated with 300 µL 

loading solution (t0) for 40 min at 37°C, 5% CO2. After incubation the overlaying medium (t40) 

was sampled. The cells were washed twice with ice cold PBS. Methanol containing internal 

standard (0.4 µM) was added to each well and the sealed plate was shaken for 3 min, at 750 

rpm to lyse the cells. The lysate was transferred to a 96-well analytical plate, in which t0 and 

t40 were diluted in methanol containing internal standard. The analytical plate was shaken for 

15 min at 750 rpm and subsequently centrifuged for 15 min at 3700 rpm, 4 °C for protein 

precipitation. Samples were then analysed by LC-MS/MS. 
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To determine the number of cells in the assay an additional 24-well plate was seeded and 

cultured as described above. The plate was washed twice with prewarmed PBS and 

hepatocyte medium containing 4 µg/mL Hoechst 33342 was added to the wells. The 

fluorescence was measured after 10 min incubation with an ImageXpress Micro (Molecular 

Devices, San Jose, CA) using a 10x objective and a DAPI filter cube. In each well 16 images 

were acquired. Cell nuclei were counted using ImageJ (Version 1.43u).  

Analytical method  

Samples were analysed with liquid chromatography-tandem mass spectrometry using an 

Agilent 1290 Infinity System comprising a G4220A binary pump, a G1316C column 

compartment and G7167B multisampler linked to an AB Sciex API4000 mass spectrometer 

with electrospray ionization. All compounds were detected in positive MRM mode with N-(4-

chlorophenyl)-2-[(4-pyridinylmethyl)amino]-benzamide (Sigma-Aldrich, St. Louis, MO) as an 

internal standard (IS). An Ascentis® Express C18 column (30 x 2.1 mm, 2.7 µm particle size; 

Sigma-Aldrich, St. Louis, MO) was used with mobile phases (A) water with 0.1 % acetic acid 

and (B) acetonitrile with 0.1 % acetic acid and a linear rising gradient from 10 % to 95 % B 

over 0.6 min with a flow of 1 ml/min, followed by a washback with a flow of 1.2 mL/min to 

10% B over 0.2 min and 0.4 min of equilibration with a flow of 1 mL/min. MRM transitions for 

propranolol, imipramine were 260.3/116.2 and 281.3/86.1 with elution times of approximately 

0.37 min and 0.42 min, respectively. The internal standard eluted after 0.48 min with a MRM 

transition of 337.8/210.9. 

Data evaluation 

LC-MS quantification results were corrected for recovery and the counted number of cells in 

the assay under the assumption of a similar lysosomotropic character of metabolites and a 

linear relation between cell number and accumulated drug. The accumulated amount of drug 

in lysosomes (𝐴𝑙𝑦𝑠𝑜.) was calculated from the difference in accumulation in control cells 

(𝐴𝑐𝑜𝑛𝑡𝑟𝑜𝑙) vs. lysosome inactivated cells (𝐴𝑙𝑦𝑠𝑜.𝑖𝑛𝑎𝑐𝑡.)  according to: 
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𝐴𝑙𝑦𝑠𝑜. = (
𝐴𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑅𝑒𝑐𝑐𝑜𝑛𝑡𝑟𝑜𝑙
−

𝐴𝑙𝑦𝑠𝑜.𝑖𝑛𝑎𝑐𝑡.

𝑅𝑒𝑐𝑙𝑦𝑠𝑜.𝑖𝑛𝑎𝑐𝑡.
) ∗

𝑓𝑐𝑒𝑙𝑙 𝑛𝑜.   

𝑁𝑛𝑢𝑐.   
(2) 

where 𝑅𝑒𝑐𝑐𝑜𝑛𝑡𝑟𝑜𝑙 and 𝑅𝑒𝑐𝑙𝑦𝑠𝑜.𝑖𝑛𝑎𝑐𝑡. are the drug recovery at the end of each experiment 

respectively. 𝑁𝑛𝑢𝑐.   is the average number of counted cell nuclei per image on the 

simultaneously handled reference plate. The amount in lysosomes was scaled to 200,000 

cells per well using 𝑓𝑐𝑒𝑙𝑙 𝑛𝑜.= 805.14, that relies on the size of the acquired images vs. the well 

size and an average of 1.27 nuclei per hepatocyte (determined separately, data not shown). 

Additionally, the percentage of accumulated drug in lysosomes (𝑝𝑎𝑐𝑐.) of total drug applied in 

the medium (𝐴𝑡𝑜𝑡𝑎𝑙) was calculated, as well as the percentage of total cellular content 

corrected for recovery. The statistical significance of reduced accumulation in lysosome 

inactivated cells compared to control cells was tested with a one-sided t-test. 

Characterization of rat hepatocyte lysosomes 

Freshly isolated rat hepatocytes were plated (36 000 cells/well) in black 96-well Biocoat 

Collagen I plates (Corning Incorporated, Corning, NY) and allowed to adhere for 24h at 37°C, 

5% CO2. Cells were washed twice with prewarmed PBS. Williams Medium E was added to 

each well containing 3 µM Lysosensor™ Yellow/Blue DND-160. After one minute of 

incubation a ratiometric imaging of fluorescence using a Fura-2 filter set on an ImageXpress 

Micro with 1000 ms of exposure was performed. The calibration was done according to 

(Wang et al., 2016) from pH 4.5 to pH 6. Images were analysed in ImageJ (Version 1.43u). In 

short, background was subtracted, regions of interest were identified by finding circular spots 

with the size of lysosomes, the fluorescence intensity was measured in both channels and 

the ratio of corresponding regions of interests was calculated. The ratio was transformed into 

a pH value using the calibration curve. The experiment was conducted with hepatocytes from 

6 different rats with a total of >350,000 lysosomes being analysed. 

Prediction of lysosomal drug sequestration  

The intracellular distribution of drugs to lysosomes was calculated based on the Henderson-

Hasselbalch equation, experimentally determined hepatocyte specific parameters, and in 
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silico predicted compound properties. The extent of lysosomal sequestration 𝐿 was 

calculated by integrating the partitioning of a drug over the whole range of possible 

intracellular pH values, see eq. 4 and a simplified schematic in . To weight the contribution of 

a pH value to the overall accumulation, we adjusted the volume of the lysosomal 

compartment at a given pH 𝑉(𝑝𝐻) based on the experimentally determined pH distribution in 

hepatocytes, the average lysosomal volume  𝑉𝑙𝑦𝑠𝑜 and the total number of lysosomes per cell 

𝑁𝑙𝑦𝑠𝑜 by: 

𝑉(𝑝𝐻) =
𝑝(𝑝𝐻)

∫ 𝑝(𝑥) 𝑑𝑥
𝑝𝐻𝑐𝑦𝑡𝑜.

𝑝𝐻𝑚𝑖𝑛

∙ 𝑁𝑙𝑦𝑠𝑜 ∙ 𝑉𝑙𝑦𝑠𝑜 (3) 

where 𝑝(·) is the probability density function represented by a normal distribution with the 

mean 𝑝𝐻 and variance 𝜎2. A constant pH of 7.2 in the non-acidic compartment 𝑝𝐻𝑐𝑦𝑡𝑜. is 

assumed (Hallifax and Houston, 2012) and a minimum possible 𝑝𝐻𝑚𝑖𝑛 of the lysosome of 4. 

Hepatocyte specific parameters used for calculations are listed in Table 2. The Henderson-

Hasselbalch based concentration ratio 𝐾𝐿 of mono-/dibasic compounds between lysosomes 

and the surrounding medium is stated by MacIntyre and Cutler (1988a). We incorporate 𝐾𝐿 to 

our equation to calculate a lysosomal sequestration extent 𝐿 for the entire lysosomal system 

in relation to the cytosolic drug content by:  

𝐿 = ∫
𝑉(𝑝𝐻) ∙ 𝐾𝐿(𝑝𝐻, 𝑝𝐾𝑎,1, 𝑝𝐾𝑎,2)

𝑉𝐵
 𝑑𝑝𝐻 

𝑝𝐻𝑐𝑦𝑡𝑜.

𝑝𝐻𝑚𝑖𝑛

(4) 

with 𝑉𝐵 as the volume of the non-acidic compartment in a hepatocyte.  The acid dissociation 

constants of basic drug moieties used to derive 𝐾𝐿 were predicted in silico using ADMET 

Predictor™ (Simulations Plus Inc.). A ready-to-use Excel file to predict the lysosomal 

trapping by the aforementioned equations and only requiring the pKa values of compounds 

can be found in the supplement. 
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6. Results  

Indirect fluorescence-based assay for lysosomotropism 

We chose a fluorescence-based method which uses the lysosomotropic dye LysoTracker™ 

Red DND-99  to stain lysosomes, and Hoechst 33342 to stain cell nuclei in order to avoid 

misinterpretations due to cytotoxicity in plated rat hepatocytes as the cell system. The final 

LTR concentration of 50 nM was chosen as it gives a strong signal without overloading the 

cells (pilot experiments, data not shown). The plated rat hepatocytes showed well defined 

fluorescent spots which was abolished by co-incubation with 25 mM NH4Cl indicating a 

functioning proton gradient in the lysosomes, thus an intact lysosomal system (). To establish 

the assay six well known reference compounds were chosen, including four lysosomotropic 

compounds chloroquine, imipramine, fluoxetine and propranolol and two non-lysosomotropic 

compounds diclofenac and olaparib. The compounds were selected based on their known 

lysosomotropic behaviour (Lemieux et al., 2004; Nadanaciva et al., 2011; Kazmi et al., 2013) 

and their physico-chemical properties with basic pKa values spanning from low to high. 

Additionally, with a logDpH7.5 between 1.6 – 3.2, all reference compounds can be expected to 

passively cross the lysosomal membrane (Table 3). For developing the evaluation method of 

the assay, the compounds were measured in a concentration range of 0.5 µM – 100 µM. The 

fluorescence threshold of ≥ 500 (intensity scale 0 – 4096) was identified to omit the 

background and cytosolic fluorescence allowing the lysosome specific analysis of LTR, which 

is different to previously published assays (Kazmi et al., 2013). Due to random attachment of 

hepatocytes on the plates, the number of cells and therefore the size of the lysosomal 

system per image differs. To compensate for this, we calculated the cell number independent 

parameter 𝑝𝑙𝑦𝑠𝑜./𝑛𝑜𝑟𝑚.  as the lysosomal fluorescence (). The concentration dependency of 

this lysosomal fluorescence  was used as the basis for IC50 calculations as a measure of 

lysosomal trapping. None of the compounds had cytotoxic effects over the concentration 

range tested. Propranolol, imipramine, chloroquine and fluoxetine all caused a significant 

reduction in LTR fluorescence in lysosomes with IC50 values of 15 ± 2.1 µM, 4.8 ± 1.2 µM, 3.9 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on November 8, 2018 as DOI: 10.1124/dmd.118.084541

 at A
SPE

T
 Journals on N

ovem
ber 18, 2018

dm
d.aspetjournals.org

D
ow

nloaded from
 

http://dmd.aspetjournals.org/


  DMD # 84541 

13 
 

± 0.5 µM and 8.0 ± 2.4 µM, respectively. The negative reference compounds diclofenac and 

olaparib both did not alter lysosomal fluorescence significantly. The strength of the lysosome 

specific fluorescence assessment results in very sensitive, i.e. lower IC50 and a strong 

resolution.  

Direct quantification of lysosomal drug content 

Additional investigations were performed with the aim to establish a quantitative link between 

fluorescence based IC50 values and the extent of lysosomal drug sequestration. We have 

quantified the intracellular content of selected compounds via LC-MS/MS in control 

hepatocytes, hepatocytes with inactive lysosomes (+ 25 µM monensin), and after co-

incubation with LTR.  The results indicate that there is no interference by the presence of 50 

nM LTR on the lysosomal drug content as shown for propranolol and imipramine ( A/D). In 

cells with inactive lysosomes the amount of drug was markedly decreased, showing an 

effective lysosome inactivation by 25 µM monensin. The reduction is significant (P < 0.05) for 

imipramine and highly significant (P < 0.01) for propranolol at every concentration tested ( 

A/D). Assuming complete lysosomal inactivation, the difference between the cellular drug 

accumulation of control cells and cells with inactive lysosomes represents the extent of 

sequestration by lysosomes, i.e. the lysosomal drug content. The lysosomal content reaches 

a plateau at 0.77 and 0.57 nmol per 200,000 cells for propranolol and imipramine, 

respectively, indicating saturation. Notably, this saturation occurs at concentrations beyond 

which the cellular drug content continues to rise. While the plateau is similar, the saturation 

concentrations differ between the compounds with imipramine being more sensitive ( B/E). 

Furthermore, the distribution to lysosomes can be determined with our assay by expressing 

the lysosomal drug content relative to the drug in control cells. At 1 µM the endo-/lysosomal 

system holds about 56% of the cellular propranolol and about 50 % of the imipramine, 

meaning most of the cellular propranolol and imipramine is located in the endo-/lysosomal 

system. As concentrations increase, lysosomal but not the cellular content becomes 

saturated causing the relative drug content to decline to 34 % and 19 % at 100 µM, 

respectively ( C/F). 
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Linking the indirect to the direct assay  

As depicted in  A/C the reduction of lysosomal fluorescence is mirrored by a rising lysosomal 

drug content for imipramine and propranolol, respectively. While the lysosomal content rises 

to a maximum, the lysosomal fluorescence approaches a minimum fluorescence level. When 

the lysosomal drug content is expressed as the proportion of applied drug, it completely 

overlays with the lysosomal fluorescence reduction ( B/D). Consequently, the IC50 values of 

the both assays are similar, with 4.8 ± 1.2 µM vs. 4.9 ± 0.9 µM for imipramine and 15 ± 2.1 

µM vs 9.5 ± 0.9 µM for propranolol. In addition, the very similar Hill slopes indicate a direct 

relation of lysosomal drug content and displaced LTR fluorescence over the whole 

concentration range. Therefore, an estimation of lysosomal drug accumulation and its 

concentration dependence can be derived from the fluorescence data.  

Lysosome characterisation in cultured rat hepatocyte  

The endo-/lysosomal volume and the pH are the most important cellular parameters for 

lysosomal sequestration. Therefore, we determined both parameters experimentally for the 

hepatocytes used in our assays. The size of hepatocytes was determined with brightfield 

microscopy (465 analysed) and for the endo-/lysosomal volume we carried out LTR staining 

followed by counting of fluorescence spots (5143 counted), determining their area (3200 

analysed)  to calculate a spherical volume (data not shown). The proportion of the endo-

/lysosomal system in plated rat hepatocytes is 1.49 ± 0.08 % of the cellular volume. The 

lysosomal pH was determined with the pH sensitive dye Lysosensor Yellow/Blue DND-160 

which changes its fluorescence spectrum depending on the surrounding pH. A calibration 

curve was constructed from pH 4.5 – 6.0 and extrapolated for pH values outside of these 

margins. Hepatocytes from six individual rats were subject to investigation with >350,000 

endo-/lysosomes analysed in total for sufficient statistical power. The endo-/lysosomal pH 

values found cover a wide range from pH 4 up to 7.2 with different frequencies of occurrence 

that follow a Gaussian distribution with a mean at pH 5.53 (). See supplement for detailed 

distribution. 
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In silico prediction of lysosomal sequestration 

In addition to the experimental data, the lysosomal accumulation was calculated according to 

eq. 4 for propranolol and imipramine. Both compounds are strong bases, with a pKa of 9.4 for 

propranolol and two basic pKa values of 9 and 2.2 for imipramine. The second basic pKa of 

imipramine however does not have a significant influence on the pH driven accumulation, 

thus it effectively behaves monobasic. The calculated amount in the lysosome (L) for 

propranolol and imipramine are 1.15 and 1.14 times the amount in the cytosol respectively, 

i.e. the endo-/lysosomal system holds about 53 % of the intracellular drug content (see 

supplement). This prediction matches perfectly with the direct quantification assay at low 

concentrations where the lysosomes are not saturated (see horizontal line in  C/F). 
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7. Discussion 

Understanding intracellular distribution and intracellular concentrations of drugs is a topic of 

growing interest, as highlighted in by the ITC White Paper of Guo et al. (2018). The 

implications of intracellular pharmacokinetics in safety and efficacy makes early information 

crucial for the selection of new drug candidates. The sub-cellular distribution to lysosomes 

plays a major role for basic lipophilic compounds. While there are some assay formats to 

assess lysosomotropism, none of them completely fulfils the requirements needed in drug 

discovery. For instance, the assay by Kazmi et al. (2013) requires compounds 

concentrations up to 500 µM, which most often cannot be achieved in the lead optimisation 

phase. Nadanaciva et al. (2011) determines lysosomal trapping in cell line that seems overly 

sensitive to cytotoxicity, thereby biasing the results. The fluorescence assay presented 

herein overcomes these shortcomings and can also be quantitatively linked to the lysosomal 

drug content. As cell system we have used freshly isolated rat hepatocytes which are rich in 

lysosomes and are routinely available in DMPK departments (Reichel and Lienau, 2016). 

The assay principle, however is also applicable to other palatable cells. 

Indirect fluorescence-based assay for lysosomotropism  

In analogy to previously published assays (Lemieux et al., 2004; 2011; Kazmi et al., 2013) 

we have used LysoTracker™ Red as a fluorescence marker, however modifying the analysis 

by specifically quantifying the fluorescence associated with lysosomes fluorescence. This is 

the major difference to Kazmi et al. (2013) who measured the fluorescence irrespective of its 

cellular location. Using a set of reference compounds we have shown that this modification 

reduces the IC50 values and therefore the concentration range to be tested, e.g. for 

chloroquine from 220 µM to 4 µM, propranolol from 80 µM to 15 µM or imipramine from 260 

to 5 µM compared to Kazmi et al. (2013). The more sensitive method now allows to measure 

also low soluble discovery compounds. When measured on an automatic microscope as 

used by Nadanaciva et al. (2011) this method is amenable for higher throughput.  
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In order to avoid misinterpretations, we have simultaneously monitored cell viability in the 

assay. None of the compounds showed cytotoxic effects at any concentration tested, 

attesting the suitability of rat hepatocytes.  

Direct quantification of lysosomal drug content 

In order to get a better understanding of the meaning and implications of the IC50 values from 

fluorescence assay we have directly determined the drug content in the lysosomes. To 

quantify the lysosomal drug content, we have directly measured the drugs via LC-MS/MS in 

hepatocytes with intact and inactive lysosomes which allows to quantify both the lysosomal 

and the total drug content in the cells. To abolish lysosomal trapping, we have used the 

ionophore monensin which collapses the pH (proton) gradient between the lysosome and 

cytosol. It therefore specifically disables the pH driven part of drug accumulation leaving 

other distribution processes such as lipid and protein binding intact.  

At low compound concentrations lysosomes contain the highest fraction of total intracellular 

drug with about 50 % and 56 % for imipramine and propranolol, respectively. This is 

comparable to data by Kazmi et al. (2013) despite using different cells and ammonium 

chloride to inhibit lysosomotropism. Whereas the extent of lysosomal trapping of both 

compounds is very similar their IC50 values differ by a factor of three (see above). This 

suggests they carry information that is more related to the concentration dependence of the 

lysosomal trapping rather than the extent. 

Linking the indirect to the direct assay 

With the possibility of drug-drug interactions involving lysosomes (Daniel and Wojcikowski, 

1999b; Daniel and Wojcikowski, 1999a; Daniel, 2003), we first ensured that LTR at the 

concentration used is not affecting the sequestration of test drugs in the fluorescence assay. 

The results shown in  A/D confirm that the presence of LTR does not affect lysosomal 

accumulation of test drugs, a prerequisite for a quantitative link between the assays.  A/C 

clearly suggests a relationship between the two assays, i.e. the declining lysosomal 

fluorescence with increasing drug concentrations is directly mirrored by the rising lysosomal 
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drug content with both readouts approaching a plateau at high concentrations. Expressing 

the lysosomal drug content in relation to the amount of drug applied in the assay, a direct 

relationship with the fluorescence assay is obtained ( B/D). Remarkably, there is a complete 

overlay of the data points from the two assays for both drugs, including Hill slopes and IC50 

values. This implies a quantitative displacement of LTR by both drugs and therefore the 

reduction of lysosomal fluorescence can be used to describe their concentration dependent 

lysosomal accumulation. This thus allows to reduce the number of measurements over the 

whole concentration range in the direct assay down to just the highest compound 

concentration as anchor point. This simplification is possible only through the lysosome 

specific evaluation of the fluorescence in the indirect assay, so that both assays can now 

operate in the same concentration range. 

In silico prediction of the extent of lysosomal trapping 

For an accurate in silico prediction of lysosomal trapping comprehensive information on the 

acidity and the fractional volume of the endo/lysosomal system is needed due to tremendous 

variations between cell types ranging from 0.23 % up to 7.8 % of the cellular volume (de 

Duve et al., 1974; Blouin, 1977; MacIntyre and Cutler, 1988a; Ufuk et al., 2015) with pH 

values reported in the range of 4.65 – 5.18 (Regec et al., 1989; Tietz et al., 1990; Kharbanda 

et al., 1997). We have for the first time determined a full profile of the pH values and 

corresponding fractional volumes of the endo-/lysosomal system in rat hepatocytes (). Simply 

using a mean lysosomal pH would underpredict the extent of lysosomal sequestration 

because the lysosome/cytosol concentration ratio (KL) rises exponentially with decreasing 

lysosomal pH (). However, due to insufficient knowledge on the pH distribution of  lysosomes 

this oversimplification was frequent practice until now. The improvement in the predictivity  by 

using the full pH profile is shown with the following examples. For two monobasic drugs with 

a pKa of 7 and 9 the predicted extent is 31 % instead of 23 %, and 53 % instead of 43 % 

calculated by eq. 4 (see supplement) versus the mean lysosomal pH (Table 2), respectively. 

The superiority of the prediction is confirmed by the experimental data of imipramine and 

propranolol (both pka ≈ 9) resulting in values of 50 % and 56 %, respectively.  
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However, it needs to be kept in mind that these predictions are valid only for low 

concentrations where lysosomal trapping is not saturated, because this may change the 

lysosomal pH profile or volume. The concentrations at which saturation will occur have to be 

determined experimentally, e.g. via the IC50 values of the indirect assay. The in silico 

predictions for a given drug are only valid up to concentrations of its lysosomal IC50. If 

information on the extent of trapping beyond these concentrations is needed this can be 

obtained by the direct assay ( C/F). 

Application in Drug Discovery 

Lysosomal drug accumulation, although likely to occur for most basic lipophilic drugs, is not 

regarded as a property requiring routine screening in drug discovery. It is rather a subject of 

special investigation that is indicated by certain trigger points. For example I) to elucidate 

unusual compound accumulation in (lysosomal rich) tissues observed in preclinical animal 

species requiring a more mechanistic understanding of the mechanism and/or a handle for 

optimisation, II) to direct the distribution of compounds whose on-targets or off-targets are 

within lysosomes in or out of the organelle, III) to specifically modify the lysosomotropism of 

compounds in differentiation to a front-runner project or competitor drugs, or IV) to reduce 

the propensity of compounds to induce lysosomal sequestration-related phospholipidosis, V) 

to examine whether a saturable uptake of a basic compound in hepatocytes is due to 

saturation of an uptake transporter or just a result of lysosomal trapping that may also get 

saturated, to name but a few. While some of these questions require mechanistic studies to 

identify whether or not lysosomal trapping is involved, other questions may need compound 

screening, rank-ordering and optimisation at a higher throughput. The set of assays 

proposed herein is principally able to meet these requirements allowing a tailored application 

in the project work.  

In conclusion, we have established an indirect fluorescence and a direct quantification assay 

set that can be quantitatively linked to assess both the susceptibility, the concentration 

dependency and the maximal extent of  lysosomal trapping in a drug discovery context 
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suitable for either screening or more mechanistic examinations. In addition, for the first time 

we have determined the full endo-/lysosomal pH profile of cultured rat hepatocytes now 

allowing a more accurate in silico prediction of the extent of lysosomal trapping of basic 

lipophilic compounds.  
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11. Footnotes 

* This work was financed by Bayer AG, Germany. 

1Thresholds need to be adjusted individually for different setups. 

² to accommodate both rapidly and slowly permeating compounds. Incubation time may have 

to be adjusted for other cell types.  
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12. Legends for Figures 

Figure 1: Mechanism of pH driven partitioning. Lipophilic basic compounds (B) can freely diffuse across 

the cell membrane in their unionized form to enter the cell and the lysosome. The acidic environment 

within the lysosome (pH 4-5) causes a drastic shift of the Henderson-Hasselbalch equilibrium towards the 

ionized form (BH+), which has a markedly reduces permeability across lipid bilayers. Unable to diffuse 

back to the cytosol, the drug gets “trapped” in the lysosome. 

Figure 2: 3D fluorescence intensity plot of rat hepatocyte in rhodamine channel stained with LTR. Image 

analysis focused on the reduction of lysosomal peak intensities (dark red) by compounds. Due to a 

variable quantity of cells per fluorescence image, the entire lysosomal system (dark + light red) served as 

a surrogate for the number of cells. Background and cytosolic fluorescence (blue) were discarded in all 

analysis. 

Figure 3: Simplified schematic of the model to calculate the pH driven distribution within the cell. It 

utilizes the in vitro conditions of the pH distribution of plated rat hepatocytes to adjust the contribution in 

accumulation of a given pH depending on the abundance of lysosomes at this pH. The entire pH driven 

accumulation of the lysosomal system was calculated from pH 4 to pH 7.2. 

Figure 4: Fluorescence microscopy (20x Objective) of plated rat hepatocytes treated with 50 nM LTR. 

Hepatocytes treated only with LTR showed selective accumulation with well-defined bright spots 

indicating functional lysosomes (left). Co-incubation with 25 mM NH4Cl (lysosomal inhibitor) attenuates 

lysosomal fluorescence markedly (right). 

Figure 5: Effect on Lysotracker Red® DND-99  fluorescence of lysosomes (closed circles) and cell 

viability (open circles) of reference compounds chloroquine, imipramine, diclofenac, propranolol, 

fluoxetine and olaparib in plated rat hepatocytes after 40 min co-incubation. Data expressed as mean ± 

SEM relative to control cells. Data was obtained from hepatocytes of three different rats, each measured 

on two separate occasions with 6 fluorescence measurements (n = 36). Corresponding IC50 values are 

summarized in Table 3.  
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Figure 6: Concentration dependent cellular accumulation of propranolol (A, B, C) and imipramine (D, E, F) 

in control cells, with co-incubation of 50 nM LTR or 25 µM monensin (A, D). LTR did not reduce the 

amount of compound taken up by the cells, while the lysosomal inhibitor monensin restricted cellular 

accumulation (*P < 0.05, **P < 0.01, ***P < 0.001). The amount of drug in lysosomes (closed squares) was 

calculated by the difference in accumulation in control cells and lysosome inactivated cells (+ monensin). 

For both drugs a maximum was reached indicating a limited capacity of lysosomes, while cellular 

concentrations linearly rise after saturation (B, E). Intracellular distribution of propranolol and imipramine 

to lysosomes (closed triangles) is maximal at low concentrations. Due to lysosomal saturation the 

proportion of drug in lysosomes is decreased at higher concentrations. The horizontal line marks the 

predicted (eq. 4) distribution to lysosomes. (C, F). Experiments (three replicates) were performed with 

freshly prepared hepatocytes originating from three individual rats. Data is expressed as mean ± SEM of 

n= 3 rats. 

Figure 7: Comparison of the reduction of lysosomal fluorescence (closed circles) with the absolute 

lysosomal drug content (closed squares) of propranolol (A) and imipramine (C). With increasing amounts 

of drug in lysosomes the fluorescence is equivalently reduced to a minimum when reaching lysosomal 

saturation. The overlay of the lysosomal fluorescence and the lysosomal drug content expressed as the 

proportion of applied drug (open triangles), shows the coherent relationship of both parameters with 

comparable IC50 values and hillslopes for propranolol (B) and imipramine (D), respectively. 

Figure 8: pH profile of the endo-/lysosomal system in plated rat hepatocytes. Lysosomes were stained 

with 3 µM Lysosensor Yellow/Blue DND-160 and fluorescence was immediately measured with a Fura-2 

Filter set. Single lysosomes were then identified, and pH was determined against a calibration curve. Data 

represents the mean ± SD abundance of lysosomes from hepatocytes of n = 6 different rats with a total of 

> 350,000 analysed lysosomes. The calculated concentration ratio KL (MacIntyre and Cutler, 1988a) for a 

basic drug (pKa=9) rises exponentially with decreasing pH, showing the potential contribution to the 

sequestration of lysosomes below pH = 5 , despite their relatively low abundance. 
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13. Tables 

Table 1: Microscope settings of fluorescence imaging 

Microscope LTR Hoechst 33342 

Filter Rhodamine DAPI 

Objective LD Plan-Neofluar 20x A-Plan 10x 

Exposure time 1000 ms 100 ms 
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Table 2: Hepatocyte characteristic parameter used for 

predicting lysosomal accumulation 

Parameter Value 

VB 5.54 ± 0.07 pL 

Vlyso 0.539 ± 0.001 fL 

Nlyso 156 ± 4.6 

𝑓𝑉,lyso. 1.49 ± 0.08 % 

pH𝑙𝑦𝑠𝑜.  
5.53 

σ2 0.1849 

pHmin 4 

pHcyto. 7.2 

VB: Volume of non-acidic compartment; Vlyso: Volume of single lysosome; Nlyso: Number 

of lysosomes per cell; 𝑓𝑉,lyso.: lysosomal fraction of cellular volume; pH
lyso.

: mean 

lysosomal pH; σ2: variance of mean lysosomal pH; pHmin: minimum pH in lysosomes; 

pHcyto: cytosolic pH; pL: picoliter; fL: femtoliter 
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Table 3: Lysosomal trapping of reference compounds in rat hepatocytes. Data expressed as mean ± SE of 
duplicate measurements from hepatocytes of three individual rats. Physicochemical data (logD7.5, basic 
pKa values) were calculated by ADMET Predictor™. 

Compound logDpH7.5 
Highest 

basic pka 

2nd highest 

basic pka 

Lysosomal trapping 

IC50 [µM] 

Cytotoxicity 

IC50 [µM] 

Chloroquine 2.4 9.9 7.3 3.9 ± 0.5 > 100 

Diclofenac 2.4 - - > 100 > 100 

Fluoxetine 3.2 9.8 - 8.0 ± 2.4 > 100 

Imipramine 2.1 9 2.2 4.8 ± 1.2 > 100 

Olaparib  1.6 0.2 - > 100 > 100 

Propranolol 1.8 9.4 - 15 ± 2.1 > 100 
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14. Figures 
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