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ABSTRACT  

Pharmacokinetic/pharmacodynamic properties are strongly correlated with the in vivo efficacy of 

antibiotics. Propargyl-linked antifolates, a novel class of antibiotics, demonstrate potent antibacterial 

activity against both Gram-positive and Gram-negative pathogenic bacteria including multidrug resistant 

S. aureus. We report here our efforts to optimize the pharmacokinetic profile of this class to best match 

the established pharmacodynamic properties. High-resolution crystal structures were used in combination 

with in vitro pharmacokinetic models to design compounds that not only are metabolically stable in vivo 

but also retain potent antibacterial activity. The initial lead compound was prone to both N-oxidation and 

demethylation which resulted in an abbreviated in vivo half-life (~ 20 minutes) in mice. Stability of leads 

toward mouse liver microsomes was primarily used to guide medicinal chemistry efforts so robust 

efficacy could be demonstrated in a mouse disease model. Structure-based drug design guided mitigation 

of N-oxide formation through substitutions of sterically demanding groups adjacent to the pyridyl 

nitrogen. Additionally, deuterium and fluorine substitutions were evaluated for their effect on the rate of 

oxidative demethylation. The resulting compound was characterized and demonstrated to have a low 

projected clearance in humans with limited potential for drug-drug interactions as predicted by CYP450 

inhibition as well as an in vivo exposure profile that optimizes the potential for bactericidal activity 

highlighting how structural data, merged with substitutions to introduce metabolic stability, is a powerful 

approach to drug design. 
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INTRODUCTION  

Antimicrobial drug resistance remains a top-of-mind public health concern and is often highlighted as an 

area of critical need for drug development. The difficulty of delivering effective antibacterial agents 

begins with developing lead compounds with potency against clinically relevant pathogens that also 

maintain optimal pharmacokinetic profiles. The importance of pharmacokinetic properties in antibiotic 

development lies in how crucial pharmacodynamics are to clinical effect (Jacobs, 2001). In this sense, 

antimicrobials are a somewhat unique therapeutic class; it is possible to directly link drug exposure to 

clinical efficacy through in vitro measurements of activity (Levinson et al., 2009). The relationship 

between the efficacy of antibiotics and their pharmacokinetic properties highlights the need to incorporate 

such work early in the drug development process.  

Understanding pharmacodynamics can be extremely useful for predicting the efficacy of preclinical leads 

and, ultimately, in developing dosing strategies. Time-dependent antibiotics rely on maintaining an 

effective concentration throughout the duration of treatment. The rate and extent of antimicrobial activity 

is independent of drug concentrations above the minimum inhibitory concentration (MIC). Rather, it is 

the amount of time the plasma levels are above the MIC that is most predictive of efficacy. 

Concentration-dependent antibiotics, on the other hand, exert their optimal effect through achieving the 

highest tolerable concentration above the MIC, meaning that Cmax/MIC and AUC/MIC are more 

predictive of efficacy (Craig, 1993).   

We have been developing a novel class of antimicrobials, propargyl-linked antifolates (PLAs), as 

effective inhibitors of the folate biosynthetic pathway. This class of agents targets the essential enzyme 

dihydrofolate reductase (DHFR), displaying nanomolar enzyme inhibition and exhibiting potent 

antibacterial activity (Scocchera et al., 2016). Structurally, PLAs are characterized by a distinct scaffold 

consisting of a conserved diaminopyrimidine ring connected to a biaryl system through an acetylenic 

linker. While the diaminopyrimidine moiety is essential for target binding to a conserved Asp/Glu 

residue, the acetylene-linked biaryl system allows PLAs to access key hydrophobic regions in the active 
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site, expanding the spectrum of activity to drug resistant enzymes (Keshipeddy et al., 2015; Lombardo et 

al., 2016). Crystal structures of trimethoprim-insensitive DHFRs reveal that the biphenyl system is 

essential for potent binding. That same biaryl system, however, diminishes the aqueous solubility of the 

PLAs. This issue prompted the exploration of nitrogen-containing heterocyclic derivatives such as 

compound 10 reported by Zhou, et al. (Zhou et al., 2012). Compound 10 not only had significantly 

improved physiochemical properties compared to earlier PLA derivatives but also showed potent activity 

against S. aureus with MIC values ≤0.625 µg/mL (Zhou et al., 2012). It was also found that manipulating 

stereochemistry at the propargyl position can improve efficacy against common clinical resistance 

mechanisms leading to the discovery of compound 11, an enantiomer of compound 10 (Keshipeddy et al., 

2015).  

With broad anti-Staphylococcal activity achieved, we turned our focus to characterizing and optimizing 

the pharmacokinetic profile of compound 11, specifically increasing AUC levels by extending half-life 

and overall drug exposure. Initial in vitro pharmacokinetic profiling of the lead indicated that, while the 

acetylenic linker was metabolically stable, the compound was vulnerable to metabolism at multiple sites 

on the biphenyl system. In mouse liver microsomes, the racemic compound undergoes arene 

hydroxylation, demethylation (2’-methoxy) and N-oxidation (pyridine) with a corresponding intrinsic 

clearance (CLint) of approximately 21 µL/min/mg of mouse microsomal protein (Zhou et al., 2012).  

The CLint of the racemate forecasted a positive pharmacokinetic profile for the single enantiomer 11 in 

vitro so we moved to determine the in vivo pharmacokinetics of the enantiopure compound in mice. 

Surprisingly, the in vivo pharmacokinetic profile diverged significantly from the in vitro data, revealing a 

short half-life and overall poor exposure. As preliminary data indicated that intrinsic clearance was 

significantly lower in human liver microsomes compared to mouse liver microsomes, we used in vitro 

mouse data to guide medicinal chemistry efforts in anticipation of in vivo murine models of bacterial 

infection. In order to determine what modifications would be needed to enhance drug exposure without 
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compromising the strong antibacterial activity, it was first necessary to understand the source of the 

discrepancies between the in vitro and in vivo datasets.  

In this report, we evaluate the pharmacokinetic liabilities of compound 11 and investigate strategies to 

decrease CYP inhibition and block the major routes of metabolism. We determined a high-resolution 

crystal structure of the lead in complex with the bacterial reductase and used this data to guide the 

synthesis of compounds with improved physicochemical properties and potent antibacterial activity. An 

efficient synthesis of the PLA scaffold allowed for the rapid generation of more than a dozen new analogs 

which enabled us to generate new, superior compounds. 
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MATERIALS AND METHODS 

Materials. For all stock solutions, test compounds were dissolved in dimethyl sulfoxide (DMSO; Sigma-

Aldrich, St. Louis, MO, USA). Buffers required for purification of recombinant DHFR were prepared 

with dithiothreitol (DTT), ethylenediaminetetraacetic acid (EDTA), glycerol, and Tris base purchased 

from Fisher Scientific (Hampton, NH, USA). Crystallization solution was prepared with gamma-

butyrolactone, MES sodium salt, nicotinamide adenine dinucleotide phosphate (NADPH), polyethylene 

glycol (PEG) 10,000, and sodium acetate purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Hydroxypropyl methylcellulose (HPMC; Sigma-Aldrich, St. Louis, MO, USA) and potassium phosphate 

buffer (BD Biosciences, San Jose, CA, USA), was used throughout microsomal experiments. Acetonitrile 

(HPLC grade) was purchased from Fisher Scientific (Hampton, NH, USA). Ethyl acetate (HPLC grade) 

was purchased from MilliporeSigma (Burlington, MA). heptafluorobutyric acid was purchased from 

Sigma-Aldrich (St. Louis, MO, USA). All mobile phases were filtered using 2.0 μm filtration discs from 

MilliporeSigma (Burlington, MA). 

Synthesis of propargyl-linked antifolates. Compounds used in this study were synthesized through a 

previously reported conjugate addition/Suzuki coupling protocol that allowed for efficient synthesis of 

racemic compounds and their corresponding enantiomeric pairs (Keshipeddy et al., 2015). Experimental 

and NMR spectra are provided in the Supplemental Methods. 

In vitro antibacterial activity. Minimum inhibitory concentrations (MIC) were determined according to 

the Clinical and Laboratory Standards Institute's Performance Standards for Antimicrobial Susceptibility 

Testing and performed in triplicate (www.clsi.org; CLSI, 2015). The microdilution broth assay was 

performed using the ATCC S. aureus quality control strain 43300 at an inoculum of 5 x 105 colony 

forming units (CFU)/mL in Oxoid Iso-Sensitest Broth (ThermoFisher Scientific, Waltham, MA, USA). 

The MIC was defined as the lowest concentration of inhibitor to visually inhibit growth following an 18-

hour incubation at 37 °C.  
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Time-kill assays with compound 19. Time-kill curves for compound 19 were performed in triplicate using 

S. aureus ATCC 43300. BD Difco Meuller-Hinton Broth (ThermoFisher Scientific, Waltham, MA, USA) 

was used throughout the experiments. Single colonies from overnight cultures grown on agar plates were 

added to Mueller-Hinton Broth (100 mL) and incubated at 37 °C until confluent. The bacterial suspension 

was was adjusted to ~5.5 x 105 CFU/mL (10 mL) and compound in DMSO added to give concentrations 

1x (0.156 µg/mL), 5x (0.78 µg/mL), 10x (1.56 µg/mL), and 100x (15.6 µg/mL) the MIC. Samples (100 

µL), taken at 0, 1, 2, 4, 6, 8, 10, 12, and 24 hours, were serially diluted in chilled normal saline and plated 

on Meuller-Hinton agar plates for quantification of viable colony forming units.  

Cloning, expression, and enzyme purification. The gene encoding S. aureus DHFR was synthesized and 

cloned in the pET41a(+) expression vector containing a C-terminus His-tag (GenScript, Nanjing, China) 

as previously reported (Frey et al., 2009). Recombinant S. aureus DHFR was then overexpressed in One 

Shot BL21(DE3) Chemically Competent E. coli (Invitrogen, Carlsbad, CA, USA), purified via nickel 

affinity chromatography, and desalted using a PD-10 column (GE Healthcare, Chicago, IL, USA) into 

buffer containing 20 mM Tris pH 7.0, 20% glycerol, 0.1 mM EDTA, and 2 mM DTT. Recombinant 

protein was concentrated to ∼10 mg/mL, flash frozen with liquid nitrogen, and stored at −80 °C. 

Crystal structure determination. S. aureus DHFR was crystallized with NADPH and compound 11 using 

the hanging-drop vapor diffusion method. Purified protein (13 mg/mL) was incubated with compound 11 

(2 mM) and NADPH (4 mM) for 3 hours on ice. An equal volume of protein/ligand/NADPH complex 

was mixed with the optimized crystallization solution consisting of 0.1 mM MES, pH 5.0, 0.1 mM 

sodium acetate, 13% PEG 10,000 and 20% gamma-butyrolactone additive. Crystals were observed within 

14 days when stored at 4 °C. Crystals were frozen in cryo-protectant buffer containing 20% glycerol and 

stored in liquid nitrogen.  

High-resolution diffraction data for S. aureus DHFR:NADPH:11 was collected at the Stanford 

Synchrotron Radiation Lightsource on beamline 14-1. Data was indexed and scaled using HKL2000 

(Otwinowski et al., 1997). The structure was refined and validated using noncrystallographic symmetry 
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and structure restraints with the PHENIX suite while COOT was used throughout the model building 

process (Adams et al., 2010; Emsley et al., 2010). Phaser was employed for molecular replacement using 

the S. aureus DHFR model PDB 3F0Q as a probe (McCoy et al., 2007). Inhibitor PDB and CIF files were 

generated with PRODRUG (Schüttelkopf et al., 2004). Data collection and refinement statistics are 

reported in Supplemental Table 1. 

Cytochrome P450 inhibition. IC50 values for recombinant human CYP3A4 were determined using a 

fluorescence-based high throughput inhibition assay (GENTEST; BD Biosciences, San Jose, CA, USA). 

Compounds were tested for inhibition activity by monitoring the conversion of 7-Benzyloxy-quinoline to 

the fluorescent 7-hydroxy-quinoline metabolite at 409 nm excitation and 530 nm emission. The reaction 

was carried out in 96-well black microtiter plates (BD Biosciences, San Jose, CA, USA). Test compounds 

(0.6 µL, 50 µM final concentration) were mixed with NADPH-Glucose 6-Phosphate Dehydrogenase Mix 

(149.4 µL) and one-third serial dilutions performed to a low concentration of 0.008 µM. The plate was 

pre-incubated for 10 minutes at 37 °C prior to initiation with Enzyme/Substrate Mix (100 µL). Following 

a 30 minutes incubation at 37 °C, the reaction was terminated with Tris Base (75 µL, 0.5 M). The 

concentration of test compound that corresponds to 50% inhibition were calculated by linear interpolation 

using the calculated percent inhibition of each compound concentration.  

IC50 values for recombinant human CYP2D6 were determined using a fluorescence-based high 

throughput inhibition assay (GENTEST; BD Biosciences, San Jose, CA, USA) where inhibition was 

monitored through metabolic conversion of 3-[2-(N,N-diethyl-N-methylamino)ethyl]-7-methoxy-4-

methylcoumarin to the fluorescent metabolite 3-[-2-(N,N-diethylaminethyl]-7-hydroxy-4-methylcoumarin 

hydrochloride at 390 nm excitation and 460 nm emission. The reaction was carried out in 96-well black 

microtiter plates (BD Biosciences, San Jose, CA, USA) following the protocol as described for CYP3A4 

IC50 determination. 

Microsomal stability. Microsomal CLint was determined via through incubation with Male Mouse 

Microsomes (CD-1; BD Biosciences, San Jose, CA, USA).  Test compound (2 µL) was added to reaction 
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buffer (973 µL) containing 200 µg/mL HPMC, 100 mM potassium phosphate, pH 7.4, and NADPH 

Regenerating System Solution (1.3 mM NADPH, 8 mM MgCl2, 3.3 mM glucose-6-phosphate, 0.5 U/mL 

G6PD) to give a final test compound concentration of either 5 µg/mL or 0.5 µg/mL. After the mixture 

was prewarmed to 37 °C, the reaction was initiated with the addition of liver microsomes (25 µL) 

resulting in a final protein concentration of 0.5 mg/mL. After 0, 10, 20, 30, 40, and 60 minutes, 100 µL of 

sample was removed, and the reaction was terminated with equal parts ice-cold acetonitrile (ACN). 

Samples were subsequently centrifuged 10,000 x g for 10 minutes, and the supernatant withdrawn. 

Samples (5 µL) were injected onto a Shimadzu Nexera UHPLC system equipped with a DGU-20A5 

Prominence degasser, SIL-30AC Nexera autosampler, CTD-30A Nexera column oven, two LC-30AD 

pumps (Shimadzu, Kyoto, Japan), LCMS-2020 mass spectrometer, and a Kinetex C18 column (1.7μm, 

100Å, 2.1 x 50 mm; Phenomenex, Torrance, CA, USA). The following chromatographic methods were 

developed to optimize resolution and detection of PLAs. Mobile phase A (0.01% heptafluorobutyric acid 

(HFBA) in water) and mobile phase B (0.01% HFBA in ACN) were used for a binary gradient elution 

that began at 95% A and 5% B, then increased to 95% B over 7 minutes, held at 95% B for 2 minutes, 

then decreased 5% B over 1 minute, and held at 5% B for 2 minutes.  

The mass spectrometer was set to a nebulizing gas flow of 1.5 L/min, a drying gas flow of 15 L/min, the 

desolvation line at 250 °C, the heat block at 400 °C, and the interface temperature at 350 °C. MS was 

performed in the positive ion mode with EPI and APCI duel ionization mode using diltiazem (0.5 µg/mL) 

as an internal control. The half-life, calculated via quantification based on MS area under the curve 

responses and comparison to authentic standards, was converted to give intrinsic clearance (CLint).  

Metabolite identification for compound 12. Phase I and phase II metabolites were identified via mouse 

liver S9 fractions (BD Biosciences, San Jose, CA, USA) as the source of membrane bound drug 

metabolizing enzymes. For generation of CYP and uridine glucuronosyl transferase (UGT) metabolites, 

test compound (2 µg/mL) was supplemented with NADPH Regenerating System Solution (1.3 mM 

NADPH, 8 mM MgCl2, 3.3 mM glucose-6-phosphate, 0.5 U/mL G6PD) and UGT Reaction Mix (25 
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µg/mL almethicin, 2 mM UDPGA) in 100 mM potassium phosphate, pH 7.4, and HPMC (200 µg/mL) to 

aid in compound solubility. After the mixture was prewarmed to 37 °C, the reaction was initiated with the 

addition liver S9 (0.5 mg/mL). Timepoints were collected at 0 and 2 hours, quenching the reaction with 

equal parts of ice-cold acetonitrile (ACN). Metabolites were reconstituted in 50% methanol via SPE 

isolation using Oasis HLB Cartridges (Waters, Milford, MA, USA). 

Samples were analyzed at the Yale School of Medicine Proteomics Center with the help of Dr. Tukiet 

Lam using tandem LC-MS/MS on a ThermoScientific LTQ Orbitrap XL (ThermoFischer Scientific, 

Waltham, MA, USA) fitted with a Waters ACQUITY UPLC System (Waters, Milford, MA, USA) and 

Restek Ultra AQ C18 column (3 µm, 10 mm x 1.0 mm, Particle Size: 3 µm; Restek, Bellefonte, PA, 

USA). Metabolites were resolved using a gradient of 0.01% HFBA in water (A) and ACN (B). The 

gradient started with 0% B and increased to 100% B over 17 minutes followed by an isocratic hold at 

100% B for 5 minutes at a flow rate of 75 µL/min and the injection volume set to 8 µL. Resolution was 

set to 30,000. Collision energy was set to 35 eV. The collision gas was helium.   

Stability of compound 17 in human hepatocytes. The intrinsic clearance of compound 17 was measured in 

mixed sex pooled cryopreserved human hepatocytes. Aliquots (45 µL) of human hepatocytes at a cell 

density of 500,000 cells/mL were suspended in Williams E medium to a final volume of 200 µL in a 96-

well plate with a final substrate concentration of 1 µM. Incubations were carried out at 37 °C under an 

atmosphere of 95% O2, 5% CO2, 75% humidity on a rotating shaker. Sample aliquots (25 µL) were taken 

at 0, 0.5, 1, 2, 3, and 4 hours and added to 75 µL of chilled ACN plus internal standard. Samples were 

centrifuged at 10,000 g at 4 °C for 10 minutes, supernatant collected, loaded on to a Kinetex C18 column 

(1.7μm, 100Å, 2.1 x 50 mm) and analyzed via LCMS as previously described. The percent of parent 

remaining (log-transformed) over time was used in a linear regression analysis to estimate half-life (first-

order) which was used in subsequent calculations of intrinsic clearance. 

Metabolite identification for compound 17. The in vitro metabolites of compound 17 were determined by 

LC-MS/MS following incubation with mixed sex pooled cryopreserved mouse and human hepatocytes 
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(Bioreclamation IVT, Westbury, NY, USA).  Thawed hepatocytes were suspended in Williams E medium 

(ThermoFisher Scientific, Waltham, MA, USA) at a final concentration of 750,000 viable cells/mL as 

determined by trypan blue staining. Incubations were initiated with the addition of compound in DMSO 

(10 µM) to an aliquot of cell suspension (1 mL). Samples were incubated at 37 °C under an atmosphere of 

95% O2, 5% CO2, 75% humidity with shaking (50 rpm) in a HERAcell 240i incubator (ThermoFischer 

Scientific, Waltham, MA, USA). Following 45 minutes, an aliquot (500 µL) was added to chilled ACN (2 

mL) in order to capture early primary metabolites. At 4 hours, the remaining sample (500 µL) was 

crashed with chilled ACN (2 mL) and combined with the early timepoint. Samples were centrifuged at 

10,000 g at 4 °C for 10 minutes and supernatant collected. Samples were dried overnight using a 

GeneVac EZ 2 Plus Personal Solvent Concentrator (Genevac Ltd, Valley Cottage, NY, USA). 

Samples were reconstituted in 0.1% formic acid in water (200 µL) and analyzed by LC-MS/MS using a 

Thermo Orbitrap Elite mass spectrometer (ThermoFisher Scientific, Waltham, MA, USA) coupled to a 

Waters ACQUITY UPLC System (Waters, Milford, MA, USA) with a Restek Ultra AQ C18 column (3 

µm, 10 mm x 1.0 mm, Particle Size: 3 µm; Restek, Bellefonte, PA, USA). Electrospray ionization in 

positive mode was used, recording full scans (m/z 100–1000), targeted, and data dependent MSn at high 

resolution (30,000) as needed. Metabolites were resolved using a gradient of 0.1% formic acid in water 

(A) and ACN (B). Samples (10 µl) were injected and a linear gradient was applied to 90% B over 35 

minutes followed by a hold at 90% B for 5 minutes before returning to initial conditions and re-

equilibrating for 5 minutes. 

In vivo pharmacokinetic characterization of compound 19.  

Animals. Experimental procedures were performed according to Institutional Animal Care and Use 

Committee (IACUC) protocol AUP022-14 which was approved by The University of Montana and its 

Institutional Animal Care and Use Committee. NIH Guidelines for the Care and Use of Laboratory 

Animals were followed for all experiments. Thirteen to fifteen-week-old female, CD1 mice (Envigo, 

Huntingdon, United Kingdom) were housed in static micro isolated cages under pathogen free, HEPA-
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filtered conditions. Other housing conditions were as follows: 12-hour light/dark cycles, controlled 

temperature (20.5–22.5 °C) and humidity (25–45%), with weekly cage changes of bedding. Food and 

water were provided ad libitum. After animal delivery, animals were given at least three days to acclimate 

to their new environment prior to the start of any experiments. 

Compound 19 was formulated for intraperitoneal (IP) delivery at a concentration of 0.2 mg/mL as 

follows: 1.8 mg compound 19 was dissolved in 0.180 mL of N-methylpyrrolidone (NMP), 2.0 mL of 45% 

w/v (2-hydroxypropyl)-β-cyclodextrin in phosphate buffered saline (PBS), and 6.820 mL of PBS.  Five 

mice were used in the study and the average mouse weight was 34 g.  Blood samples were collected via 

the saphenous vein into heparinized capillary tubes followed by transfer to 1.5 mL Eppendorf tubes with 

EDTA (30 μL of 100 mM EDTA at pH 8) and mixed. Blood was not taken more than three times from 

any one mouse. Samples were stored at 0 °C until centrifuging later that same day. Following the last 

time point, all blood samples were centrifuged at 13,500 rpm for 15 minutes at 4 °C. The supernatant was 

then transferred to a new 1.5 mL Eppendorf tube and stored at −80 °C until the sample extraction step. 

Sample extraction procedure. For each plasma sample a small volume (20 μL), held in an Eppendorf 

tube, was mixed briefly by vortexing with internal standard (IS) spiking solution (10 μL); the IS spiking 

solution consisted of 500 ng/mL 6-ethyl-5-[5-(4-pyridyl)pent-1-ynyl]pyrimidine-2,4-diamine. The 

samples were vortexed for 3 minutes. Ethyl acetate (500 μL) was added to each sample, mixed by 

vortexing, shaken for 10 minutes, vortexed briefly again and then the phases separated by centrifugation 

at 10,000 rpm for 10 minutes at room temperature. The ethyl acetate supernatant (450 μL) was transferred 

to a new Eppendorf tube and concentrated to dryness in vacuo using a Savant SpeedVac (ThermoFisher 

Scientific, Waltham, MA, USA). The dried samples were reconstituted in HPLC mobile phase (50 μL) for 

analysis. 

Preparation of calibration standards and quality control standards. The primary, standard stock solution 

of compound 19 was prepared at a concentration of 6.4 mg/mL in DMSO. The standard spiking solutions 

were prepared in 50:50 v/v acetonitrile:water at concentrations of 500, 1,000, 2,500, 5,000, 10,000, 
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20,000, 40,000, and 80,000 ng/mL. The IS stock solution was prepared at a concentration of 2.5 mg/mL 

in 50:50 v/v acetonitrile:water from which the IS spiking solution was prepared at a concentration of 500 

ng/mL in 50:50 v/v acetonitrile:water. Standard spiking solutions and IS spiking solution were stored at 

−20 °C or 4 °C until use. Plasma standards were prepared by adding 11 μL of respective standard spiking 

solution to 99 μL of drug-free mouse plasma. The working standard concentrations for plasma standards 

were thus 50, 100, 250, 500, 1000, 2000, 4000, and 8000 ng/mL. 

Instrumentation. Analysis was performed on an Agilent HPLC system (Agilent Technologies, Santa 

Clara, CA, USA) equipped with an autosampler (Agilent 1260 Infinity, Model G1329B), a degasser 

(Agilent 1200, Model G1379B) and a binary pump (Agilent 1200, Model G1312B) coupled to a Bruker 

Amazon SL ion trap mass spectrometer (Bruker, Billerica, MA, USA). Data was analyzed using the 

Bruker Compass DataAnalysis software suite (Version 4.2, Build 383.1). A Phenomenex Gemini (3.0mm 

× 150 mm, 100 Å, 5 μm) column with an attached Phenomenex SecurityGuard (C18, 4 × 2.0 mm, Part 

No. AJ0-4286; Phenomenex, Torrance, CA, USA) guard column was used for analysis. The analysis was 

performed under isocratic conditions at ambient temperature. The mobile phase was premixed at a ratio of 

30:70 (v/v) 10 mM NH4HCO3:acetonitrile. The mobile phase was filtered through 2.0 μm filtration discs 

(Millipore, Cat. No. AP2504700). The flow rate used was 0.320 mL/min with a resultant backpressure of 

approximately 35 bar. The total run time was 6 minutes with an injection volume was 10 uL. 

Detection was performed with positive mode electrospray ionization (ESI) and selected ion monitoring 

(SIM). The [M+H]+ ions at m/z 406.2 and 282.2 were chosen for SIM data collection for quantitation of 

19 and the internal standard 6-ethyl-5-[5-(4-pyridyl)pent-1-ynyl]pyrimidine-2,4-diamine, respectively. 

The following MS parameters were used during data collection: electrospray voltage +4,500 V, source 

temperature 250 °C, nebulizer gas (nitrogen) 29 psi, and dry gas flow rate (nitrogen) 12 L/min.  
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RESULTS  

In vivo pharmacokinetics for compound 11. Plasma profiles of compound 11, both through IP injection 

and oral gavage, were determined in mice using a single dose of 16 mg/kg. Following IP injection at 16 

mg/kg, the Cmax reached 10.2 µg/mL and the AUC, 294 min*µg/mL.  CL and t1/2 were 54 mL/min/kg 

and 20 min, respectively. When administered orally at 16 mg/kg, the Cmax and AUC were 1.44 µg/mL 

and 24.6 min*µg/mL giving a bioavailability of 8.4%. 

Crystal structure of S. aureus DHFR in complex with NADPH and compound 11 and design of new 

analogs. Diffraction data yielded a 2.24 Å resolution structure of SaDHFR:NADPH:11. As expected, the 

diaminopyrimidine ring formed conserved hydrogen bonds with the carboxyl group of Asp 27 and the 

carbonyl groups of Leu 5 and Phe 92 (see Figure 1). The methoxyphenyl moiety is positioned in a 

predominately hydrophobic pocket consisting of Leu 20, Ser 49, Ile 50 and the cofactor, NADPH. The 

pyridine ring is surrounded by four hydrophobic residues (Leu 20, Leu 28, Ile 50, Leu 54) while forming 

a water network of hydrogen bonds with Arg 57. The 1, 2, and 6-positions of the pyridyl group are 

solvent exposed, suggesting that modifications in this domain would be well tolerated by the enzyme.  

In vitro optimization of compound 11 leads to the development of compound 19. Microsomal stability 

was determined for compounds 11, 12, and 13 by monitoring the presence of compound after incubation 

in mouse liver microsomes (see Table 1). The experiments were carried out with a substrate concentration 

of 0.5 µg/mL giving an observed CLint of 10 µL/min/mg of mouse microsomal protein for compound 11. 

Surprisingly, both compounds 12 and 13 had elevated clearances relative to 11 (40 and 173 µL/min/mg, 

respectively) despite the presence of bulky ortho substitutions designed to reduce the rate of formation of 

the N-oxide metabolite. 

Of the CYP450 isoforms, CYP3A4 and CYP2D6 account for 50% and 30% of all xenobiotic metabolism, 

and play an important role in monitoring the potential for drug-drug interactions throughout the drug 

discovery process (Sun et al., 2011). As such, CYP3A4 and CYP2D6 IC50 values were determined in 
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parallel by monitoring conversion of a non-fluorescent substrate to a fluorescent metabolite and 

calculated from the net fluorescent signal. Compound 11 was determined to have potent CYP inhibition 

capability (CYP3A4 IC50: 0.05 µM / CYP2D6 IC50: 1.6 µM). The dimethyl substitution of compound 12 

reduced CYP3A4 and CYP2D6 inhibition 370 and 6-fold while the methoxy substitution of compound 13 

reduced CYP3A4 and CYP2D6 inhibition 270 and 8-fold (see Table 1).  

Microsomal stability was then re-determined using a 10-fold lower concentration of substrate than 

initially employed. It is worthy of note that the reduced concentration resulted in a CLint of ~99 

µL/min/mg for compound 11, 10-fold higher than the CLint estimated in experiments with the 0.5 µg/mL 

substrate concentration. Similarly, the reduced concentration of compound 12 resulted in an estimated 

CLint of ~173 µL/min/mg, 4-fold faster than in the initial microsome incubations. In order to improve the 

metabolic stability of the leads while simultaneously reducing the potency of CYP inhibition, it was 

necessary to first identify the preferred routes of biotransformation for these new derivatives. 

A demethylation product metabolite of compound 12 was identified following incubation with mouse 

liver microsomes. In addition, mono-hydroxylation metabolites were also detected. When compound 12 

was incubated in the presence of both Phase I and Phase II cofactors, the phenolic metabolite undergoes 

subsequent glucuronide conjugation (see Figure 2). 

Once it was determined that the methoxy group was a major site of metabolic vulnerability, additional 

derivatives of compound 12 were synthesized bearing less reactive substituents at that position to 

diminish the formation of these demethylated metabolites. The crystal structure data suggests that the 2-

methoxy-phenyl occupies a tight, predominately hydrophobic pocket consisting of Leu 20, Ser 49, Ile 50 

and the cofactor, NADPH. With limited physical space to modify the compound, two strategies were 

envisioned to reduce or prevent the formation of the demethylation product: 1) modification of the 

methoxy group through deuteration or fluorination and 2) replacement of the methoxy group altogether. 
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Compound 14, a deuterated derivative of 12, and compound 15, a fluorinated derivative of 12, were 

designed to potentially slow the demethylation route and gave CLint values of ~154 and ~22 µL/min/mg, 

respectively. The pharmacokinetic effects of removing the metabolic liabilities present in compound 11 

were investigated through the synthesis of three analogs; hydro-substituted (compound 16), chlorine-

substituted (compound 17), and fluorine-substituted (compound 18) phenyl derivatives. Where the CLint 

for compound 16 was calculated to be ~70 µL/min/mg, a modest 2.5-fold decrease from compound 12, 

the chloro-and fluoro-derivatives recorded clearances of ~25 and ~28 µL/min/mg, respectively (see Table 

1). The 2-chlorophenyl derivative, compound 17, demonstrated virtually no CYP inhibition, a 

significantly extended half-life, maintained potent antibacterial activity, and was selected for further 

testing.  

Human hepatocyte stability for compound 17. The metabolic stability of our most promising 

compound, 17, was subsequently determined in human hepatocytes to provide context for data collected 

in in vitro mouse models and predicted human clearance. The resulting half-life was 180 minutes and 

corresponds to an CLint of ~8 µL/min/106 cells, an CLint,app,scaled of ~19 mL/min/kg, and subsequent 

extrapolation to an hepatic clearance of ~10 mL/min/kg.  

Metabolite identification for compound 17 in human and mouse hepatocytes. Prior to in vivo 

evaluation, we identified the major metabolites of compound 17 in mouse and human hepatocytes to 

confirm that we did not introduce unexpected metabolites. Based on the UV trace of the metabolites 

generated, the major metabolic pathway for compound 17 in mouse and human hepatocytes was 

oxidation, either hydroxylation or N-oxidation (see Figure 3). In the high-resolution full scan, the parent 

[M+H]+ was observed at m/z 406.1746 which is identical to the calculated value for compound 17. 

Results from incubation with mouse hepatocytes mirrored those from human hepatocyte incubation. For 

both experiments, metabolite ions were observed at m/z 438 (bis-hydroxylation), m/z 422 (mono-

hydroxylation or N-oxidation), and m/z 436 (methyl conversion to carboxylic acid). The fragmentation 

patterns of the metabolites were distinct from that of the parent, and either the fragment ion at m/z 189, 
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corresponding to the diaminopyrimidine ring and propargyl linker, or the fragment ion m/z 244, 

corresponding to the propargyl methyl and biphenyl system, was used to identify and assign the masses 

for metabolites and the parent compound. The N-oxide and hydroxylation metabolites were assigned by 

either the loss of 16 mass units, consistent with N-oxide fragmentation by loss of oxygen, or the loss of 18 

mass units indicative of hydroxyl release. We were able to discern that hydroxylation occurs at the 

propargyl methyl in mouse hepatocytes. Likewise, it was possible to observe conversion of a methyl to a 

carboxylic acid ortho to the pyridine nitrogen in human hepatocytes. There were no diagnostic fragments 

that could aid in identifying the location of the other hydroxylation products even though each had 

distinct retention times. The proposed metabolic pathway is summarized in Figure 4, and the MS2 and 

MS3 spectra are available in Supplemental Figures 1-11. 

In vivo pharmacokinetics for compound 19. For comparison to compound 11, compound 19, the single 

S-isomer of racemate 17, was synthesized for in vivo analysis. The plasma profiles of compound 19 were 

analyzed following IP and oral doses of 5 mg/kg via non-compartmental analysis using a linear 

trapezoidal method (see Supplemental Figure 15-16). IP administration yielded a Cmax of 4.1 µg/mL, 

AUC of 838 min*µg/mL, CL of 6.0 mL/min/kg, and half-life of 69 minutes. When administered orally at 

16 mg/kg, the Cmax, AUC, and half-life were 0.4 µg/mL, 156 min*µg/mL, and 4.5 hours giving a 

bioavailability of 18.6%.  

Time-kill assays with compound 19. Time-kill curve profiles were determined for compound 19 at 1x, 

5x, 10x, and 100x MIC and the results are summarized in Figure 5. Overall, all concentrations above the 

MIC demonstrated similar bactericidal activity at 12 hours, however, there was significantly faster 

bacterial killing at concentrations >10x MIC. When exposed to 100x the MIC, the bacterial population 

was reduced ~40% within four hours, whereas it took eight hours to reach the same level at lower 

concentrations.  
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DISCUSSION 

In this report we describe some of the challenges faced in the development of new antifolate antibiotics. 

We determined that our in vitro pharmacokinetic model was biased to select for strong CYP inhibitors 

and suggested artificially long half-lives. After successfully adjusting the assay to better represent in vivo 

conditions, we were able to design compounds with minimal CYP inhibition and ideal pharmacokinetic 

profiles. Use of high-resolution crystal structures allowed us to do this in an extremely efficient manner 

without compromising antibacterial activity, demonstrating that structure-based design leveraged with 

metabolism data (sites and rates) can be combined in the design of superior analogues.  

Previous work proved compound 11 had exceptional antibacterial activity against multidrug resistant S. 

aureus, and initial in vitro pharmacokinetic data indicated potential for successful in vivo studies with a 

clearance of ~10 µL/min/mg of mouse microsomal protein (Keshipeddy et al., 2015). However, the 

resulting in vivo clearance was ~54 mL/min/kg, higher than expected and not practicable for in vivo 

infection models. To explain the discrepancies between the in vitro and in vivo datasets, it was 

hypothesized that the pyridine moiety of compound 11 (or, potentially, the corresponding N-oxide 

metabolite) could be inhibiting CYP enzymes in vitro and producing an artificially long in vitro half-life 

due to saturation of metabolism. Thus, it is possible that the off-target activity of compound 11 was, itself, 

responsible for the divergence between the in vitro and in vivo clearance measurements. Crystal structure 

data of S. aureus DHFR with compound 11 guided the synthesis of compounds 12 and 13 to test this 

hypothesis. 

The metabolite profile of compound 10 indicated there are four major metabolites: N-oxidation and 

hydroxylation of the diaminopyrimidine ring, demethylation of the 2’-methoxy group, and N-oxidation of 

the pyridine ring (Zhou et al., 2012). Sites of biotransformation on the diaminopyrimidine ring cannot be 

modified as this functionality is responsible for key hydrogen bonds deep within the active site; however, 

as the pyridine ring and 2’-methoxy group do not make crucial contacts with the enzyme they are ideal for 

chemical modification to modulate pharmacokinetic parameters.  
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Crystal structure analysis of S. aureus DHFR complexed with compound 11 indicated that four 

hydrophobic residues (Leu 20, Leu 28, Ile 50, and Leu 54) could accommodate substitutions adjacent to 

the nitrogen of the pyridine ring. Two new analogs, 12 and 13, which contain a 2,6-dimethylpyridyl or 2-

methoxypyridyl ring, respectively, were synthesized. Computationally, the dimethyl and methoxy 

substitutions were predicted to increase ligand-target interactions through enhanced van der Waals 

contacts. Additionally, these modifications were not expected to disrupt the hydrogen bonding network 

with Arg 57 through an active site water. As anticipated, these substitutions were well tolerated with 

regard to antibacterial activity, yielding potent MIC values of 0.156 g/mL. 

Evaluation of structure-activity relationships and metabolite identification data of compound 12 

confirmed that adding bulky substituents adjacent to the pyridyl nitrogen not only eliminated CYP 

inhibition but also completely abrogated the N-oxide metabolite formation. Interestingly, as CYP 

inhibition was reduced, the in vitro clearance of lead compound 12 remained unchanged if not enhanced 

as compared to compound 11. Metabolite identification studies indicated that 2-methoxyphenyl 

demethylation was the primary metabolite. A small but focused series of five compounds were 

synthesized predicated on the structural analysis of metabolites and the modes of binding to S. aureus 

DHFR to decrease clearance rates.  

Deuterated and fluorinated derivatives, 14 and 15, were designed to slow or prevent formation of the 

demethylated metabolites. Deuteration was an attractive approach as there are minimal differences 

between the physiochemical chemical properties of hydrogen and behavior in the DHFR active site is 

expected to be the same. The effects of substituting hydrogens for deuterium isotopes has gained interest 

as an approach to reduce the reactivity and slow the biotransformation of drugs (Guengerich, 2017). In the 

case of deutetrabenazine, approved in 2017 as the first deuterated therapeutic, two deuterated methoxy 

groups are proposed to slow the generation of the hydroxyl metabolite to a useful degree (Schmidt, 2017). 

However, the deuteration of compound 12 showed minimal benefit, imparting little to no effect on the in 

vitro clearance (compound 12 CLint: 8 minutes; compound 14, the deuterated derivative, CLint: 9 minutes). 
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The trifluoromethyl substitution has become fairly commonplace in therapeutics as it is known to impart 

metabolic stability when replacing a methyl group, setting precedent for the synthesis of compound 15 

(Feng et al., 2016; Wang et al., 2013). The strong electronegativity of the trifluoromethoxy had a 

profound effect on metabolic stability, increasing half-life nearly 8-fold and eliminating CYP inhibition 

(CYP3A4 IC50: >50 µM, CYP2D6 IC50: >50 µM). 

Three compounds were designed to test the effects of replacing the methoxy group of compound 12 on 

the observed in vitro clearance. An unsubstituted phenyl derivative resulted in a modest 2.5-fold decrease 

in CLint, likely due to the propensity for exposed phenyl rings to be CYP substrates. Chlorinated 

(compound 17) and fluorinated (compound 18) derivatives were synthesized as substituting aromatic 

rings with electronegative atoms are known to slow oxidative metabolism (Wang et al., 2013). Crystal 

structure data indicates that Ser 49 participates in a hydrogen bond with the oxygen of compound 11, and 

with evidence suggesting that halogens may act as weak hydrogen bond acceptors, it was anticipated that 

chlorine and fluorine substitutions would have minimal impact on ligand binding (Lin et al., 2017). 

This had a marked effect on the in vitro clearance, decreasing it ~4 fold for compounds 17 and 18, 

respectively. In vitro estimations in mouse liver microsomes correspond with intrinsic clearance 

calculated in human hepatocytes (compound 17 CLint,app,scaled: ~19 µL/min/kg). Compound 19, the 

corresponding enantiomer of 17, was synthesized not only for direct in vivo comparison to compound 11, 

but also because crystal structure data suggests this enantiomer predominately occupies the active site of 

DHFR. Our conclusions from in vitro experiments translated to improvements in vivo as half-life, AUC, 

and CL improved 3-, 3-, and 9-fold when comparing IP data (see Table 2).  

While an 8-fold loss in potency, as assessed by MIC, was observed for compound 19 compared to 

compound 11, the pharmacodynamic profile of compound 19 provides powerful insight into predicting 

efficacy. Time-kill curve analysis indicate that compound 19 demonstrates concentration-dependent 

antibacterial activity at concentrations >10x MIC. In this case, peak/MIC and AUC/MIC are the 

important pharmacodynamic descriptors. If given by the intraperitoneal route, the peak/MIC is 26 and the 
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AUC/MIC is over 5,000. For context, aminoglycosides, a staple in several antibiotic regimens, 

demonstrate concentration-dependent antibacterial activity and a >90% rate is associated with a 

peak/MIC ratio of ≥12 (Moore et al., 1987). Likewise, fluoroquinolones, another class of powerful 

concentration-dependent antibiotics, are associated with a 100% microbiological response if they achieve 

an AUC/MIC ratio or >33 (Ambrose et al., 2001). In the case that plasma levels are ≤10x MIC, time-

dependent antibacterial activity and time>MIC is the pharmacodynamic property that correlates with 

efficacy. With the significantly improved half-life, plasma levels are maintained for nearly ten hours 

above the MIC indicating effective concentrations can be maintained.  

In this report, we describe the further optimization of propargyl-linked antifolates as potential new 

antibiotic agents targeting several of the most important pathogenic bacteria. Key to the success of these 

efforts was the availability of a high-resolution crystal structure of the lead agent in complex with the 

bacterial target. Analysis of the metabolic profile in the context of this structure allowed us to design and 

evaluate a small number of new analogs constructed to limit major metabolic liabilities while maintaining 

strong interactions with the target, this maintaining strong antibacterial activity while extending exposure 

to the agent. 
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FIGURE LEGENDS 

Figure 1. Crystal structure of S. aureus DHFR (cyan) in complex with compound 11 (green). 11 makes 

conserved hydrogen bonds with Leu 5 and Asp 27 through the diaminopyrimidine ring and hydrophobic 

residues as well as significant van der Waals contacts with Leu 20, Ser 49, Ile 50, and Phe 92. PDB ID: 

6ND2. 

Figure 2. The proposed metabolic scheme for compound 12 following incubation with mouse liver 

microsomes. 

Figure 3. The UV trace at 284 nM for compound 17 metabolite identification in mouse and human 

hepatocytes. (a) Incubation with human hepatocytes indicates there are ten distinct metabolites: four m/z 

438 (double hydroxylation products); three m/z with MS-2 data indicating a hydroxylation product; two 

m/z 422 with MS-2 data indicating N-oxide products; one m/z 436 with MS-2 data indicative of methyl 

conversion to a carboxylic acid. MS-2 spectra are provided in the supplemental materials. (b) Similarly, 

mouse hepatocyte incubation indicates there are nine distinct metabolites: three m/z 438 (double 

hydroxylation products); two m/z 422 with MS-2 data indicating a hydroxylation product; two m/z 422 

with MS-2 data indicating N-oxide products; one m/z 436 with MS-2 data indicative of methyl conversion 

to a carboxylic acid 

Figure 4. The proposed metabolic pathway for compound 17. 

Figure 5. Time-kill curve determination of S. aureus ATCC 43300 exposed to compound 19 at 1x, 5x, 

10x, and 100x the MIC. Data suggests that compound 19 demonstrates concentration-dependent 

bactericidal activity at concentrations >10x the MIC. 
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TABLES 

Table 1. Propargyl-linked antifolates synthesized to reduce CYP inhibition imparted through the 

unsubstituted pyridine of compound 11. The intrinsic clearance is reported for the two substrate 

concentrations tested, 5 µg/mL and 0.5 µg/mL. 

  
 

   
MLM CLint  

(µL/min/mg) 

  

Scaffold Compound 

Stereo-

chemistry B-ring C-ring 

MIC 

(µg/mL) 

5 

µg/mL 

0.5 

µg/mL 

CYP3A4 

(µM) 

CYP2D6 

(µM) 

 

10 racemic 

  
0.625 21 - - - 

11 S 

  
0.078 10 99 0.05 1.6 

12 racemic 

  
0.156 40 173 3.6 9.8 

13 racemic 

  
0.156 69 - 2.6 13.2 

14 racemic 

  
0.312 - 154 11 12.9 

15 racemic 

  
0.625 - 22 >50 >50 

16 racemic 
  

0.156 - 69 0.5 27.4 

17 racemic 

  
0.312 - 25 43 >50 
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18 racemic 
  

0.625 - 28 5.4 >50 

19 S 

  
0.156 - 18 41 >50 
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Table 2. In vivo comparison of compound 11 and compound 19.  

In vivo Data 

Compound  

11  

(16 mg/kg) 

19  

(5 mg/kg) 

Route IP PO IP PO 

t1/2 (min) 19.8 11.4 68.6 272.8 

AUC 

(min*µg/mL) 

294 24.6 838.1 155.8 

Cmax (µg/mL) 10.16 1.44 4.1 0.4 

CL (mL/min/kg) 54.37 – 5.96 – 

F (%) – 8.4 – 18.6 
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FIGURES 

Figure 1. 

  

  

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on June 14, 2019 as DOI: 10.1124/dmd.119.086504

 at A
SPE

T
 Journals on A

pril 23, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


 

 
 

Figure 2 

. 
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Figure 3. 
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Figure 4.  
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Figure 5.  
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