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Supplemental Fig. 5. MBI of CYP3A4 and CYP2J2-mediated metabolism of rivaroxaban by verapamil and 
norverapamil. Semi-logarithmic plots demonstrate time- and concentration-dependent inhibition of CYP3A4 by (A)
verapamil and (B) norverapamil using rivaroxaban as probe substrate and enabled the determination of pseudo-first 
order rates of inactivation (�N�R�E�V) at various verapamil and norverapamil concentrations. In (C) and (D), the relationship 
between �N�R�E�Vvalues determined from (A) and (B) and inhibitor concentration was further investigated via non-linear 
regression analysis to derive inactivation kinetic constants, �. �,and �N�L�Q�D�F�W. In contrast, time-dependent decrease in CYP2J2 
activity across pre-incubation times was not apparent with verapamil (E) and norverapamil (F) as the putative inhibitors.
Each point in the semi-logarithmic plots represents the mean of triplicate determinations.
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Supplememtal Fig. 6. Reversible inhibition of CYP3A4 and CYP2J2-mediated metabolism of rivaroxaban by 
verapamil and norverapamil. Michaelis-Menten plots illustrate reversible inhibition of CYP3A4 and CYP2J2 in the 
presence of (A and E) verapamil as well as (B and F) norverapamil. Data from (A, B, E and F) were transformed to 
corresponding Lineweaver-Burk plots in to reveal mixed mode inhibition of CYP3A4 in (C, D) and competitive 
inhibition of CYP2J2 in (G, H) when rivaroxaban was used as the probe substrate. Each point represents the mean of 
triplicate determinations. 
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Supplemental Fig. 7. Inhibition of the enzyme and transporter-mediated elimination of rivaroxaban by 
ketoconazole and verapamil. (A and B) represent in vitro IC50 curves used to quantify the reversible inhibition of 
CYP3A4- and CYP2J2-mediated metabolism of rivaroxaban respectively. (C and D) illustrate the inhibitory 
effects of intracellular unbound concentrations of ketoconazole on the CLAtoB,i; CLBtoA,i and 1/CLAtoB,i - 1/CLAtoB(-
P-gp) values of rivaroxaban. Intracellular unbound concentrations derived from three compartmental modeling 
were verified via assessing the goodness of fit between measured versus predicted ketoconazole concentrations in 
the (E) basolateral and (F) apical compartments of the transwell apparatus. The in vitro IC50 values describing the 
inhibition of the P-gp-mediated efflux of rivaroxaban by ketoconazole was converted to the inhibition constant Ki

by applying the Cheng Prusoff equation (eq. S14a) assuming competitive inhibition. (G and H) illustrate the 
inhibitory effects of ketoconazole and verapamil respectively on the OAT3-mediated uptake of rivaroxaban into 
HEK cells. Inhibition experiments performed in (G) is represented as the mean ± SD of two experiments. All 
other data are results from a single experiment carried out in triplicate.
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C

Supplemental Fig. 8. (A) Simulated rivaroxaban AUC ratio at different input values of OAT3 Ki and P-gp Ki. 
(B) Simulated rivaroxaban CLR at different input values of OAT3 CLint,T and P-gp REF. Values of OAT3 CLint,T, 
P-gp REF, OAT3 Ki and P-gp Ki were varied using the automated sensitivity analysis tool in the Simcyp simulator 
in a population representative following the clinical trial design reported by (Mueck et al., 2013). (C) Predicting 
the effect of various physiological changes (either reductions in PTCPGK or transporter abundance) 
characterizing mild and moderate renal impairment on the CLR of rivaroxaban
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Supplemental Table 8. Comparison of (A) clinically observed renal clearance with simulated renal clearances of rivaroxaban using the (B) 35-compartment 
mechanistic kidney model versus (C) MechKiM module within the Simcyp simulator

fu,p Reported 
Apparent 

Permeability 
(10-6 cm/s)

CLapi,scr (L/h)a CLbsl,scr (L/h)a Observed
CLR (L/h)

(A)

Simulated CLR 

(L/h)b

(B)

Simulated CLR

(Mech
KiM)
(L/h)b

(C)

Fold difference

0.065 21.8 
(Caco-2)

12.7 
(L-MDR1)

25.8 
(LLC-PK1)

12.88 
(MDCK-MDR1)

0 0 3.1 0.27

0.32

0.26

0.32 0.35 B/C = 0.91

0.065 12.88 
(MDCK-MDR1)

42.3 0 3.1 0.37 0.35 B/A = 0.12

0.065 12.88 
(MDCK-MDR1)

42.3 52.9 3.1 4.4 3.26 B/A = 1.41
C/A = 1.05

a Prediction of in vivo rivaroxaban basolateral and apical secretion clearances based on in vitro transporter data (Supplemental Table 1) using scaling factors of 60 million 
proximal tubule cells per gram kidney and 341.5 g of kidney per person.
b Renal clearance was calculated as the steady state urinary excretion rate (amount of drug excreted into the urine in a unit time) divided by the plasma rivaroxaban concentration 
at steady state.
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Supplemental Table 9: Physiological changes in renal impairment

GFR 
(mL/min/1.73m2)

Tubular Flow 
(L/h)

(Percentage of 
Cardiac 
Output)a

OAT3 
Abundanceb

P-gp 
Abundanceb

PTCPGKb

136.4 59.0 1 1 60
120 59.0 0.88 0.88 52.8
80 59.0 0.59 0.59 35.2
60 54.6 0.44 0.44 26.4
40 54.6 0.29 0.29 17.6

Reduction in both filtration and secretion was performed to represent changes in renal impairment. Simulated 
population representative of the healthy “NEurCaucasian” population available in Simcyp population had an age, 
weight, and body surface area of 58 years, 82 kg, and 1.97 m2 respectively. 
aCardiac output for the population representative was defined as CO = BSA×60×(3-0.01*(age-20)). Tubular flow 
was defined as 19% of cardiac output for a healthy population (GFR > 80 mL/min/1.73 m2), 17.67% of cardiac 
output for GFR 30-60 mL/min/1.73m2 and 16.98% for GFR < 30 mL/min/m2

bRelative change in GFR for each scenario was calculated using the value of 136.4 ml/ min/m2 as baseline and 
applied to the OAT3 abundance, P-gp abundance or PTCPGK parameter. Reductions in renal transporter 
expression was represented in MechKiM by assigning relative abundances for the OAT3 and P-gp transporters in 
kidney in the “poor transporter” (PT) phenotype as a proportion of the Simcyp “extensive transporter” phenotype 
value of 1 and setting the frequency of PT in the modified population to 1 (Scotcher et al., 2017). Changes were 
applied equally to each of the 3 sub-regions of the proximal tubule.
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Modelling Supplemental Data. 

Modelling Supplemental Data File 1: Simulated PK of rivaroxaban in mild renal impairment. 

Modelling Supplemental Data File 2: Predicted extent of DDI between rivaroxaban and verapamil in 

a healthy population. 

Modelling Supplemental Data File 3: Predicted magnitude of DDI between ketoconazole and 

rivaroxaban in a healthy population where the Ki of ketoconazole against OAT3-mediated rivaroxaban 

uptake has been optimized.

Modelling Supplemental Data File 4: Simulated PK of rivaroxaban in the absence of mechanistic 

kidney modelling

Modelling Supplemental Data File 5: Simulated PK of rivaroxaban in the presence of mechanistic 

kidney modelling




