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drug-drug interaction; FDA, Food and Drug Administration; FSM, furosemide; GCDCA-S, 

glycochenodeoxycholate-3-sulfate; HDA, hexadecanedioate; HEK293, human embryonic kidney 

293 cells; IC50, concentration required to inhibit transport by 50%; LC-MS/MS, liquid 

chromatography–tandem mass spectrometry; OAT, organic anion transporter; OATP, organic 

anion-transporting polypeptide; PROB, probenecid; R-value: ratio of victim AUC in the presence 

and absence of perpetrators; SD, standard division; SE, standard error; TDA, tetradecanedioate.        
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ABSTRACT  

Probenecid (PROB) is a clinical probe inhibitor of renal organic anion transporter (OAT) 1 and 

OAT3 that inhibits in vitro activity of hepatic drug transporters OATP1B1 and OATP1B3. It was 

hypothesized that PROB could potentially affect the disposition of OATP1B drug substrates. The 

plasma levels of the OATP1B endogenous biomarker candidates, including coproporphyrin I 

(CPI), CPIII, hexadecanedioate (HDA), and tetradecanedioate (TDA), were examined in 14 

healthy subjects treated with PROB. After oral administration with 1,000 mg PROB alone and in 

combination with furosemide (FSM), AUC(0-24h) values were 1.39 ± 0.21- and 1.57 ± 0.41-fold 

higher than predose levels for CPI and 1.34 ± 0.16- and 1.45 ± 0.57-fold higher for CPIII. 

Despite increased systemic exposures, no decreases in CPI and CPIII renal clearance (CLR) were 

observed (0.97 ± 0.38- and 1.16 ± 0.51-fold for CPI, and 1.34 ± 0.53- and 1.50 ± 0.69-fold for 

CPIII, respectively). These results suggest that the increase of CP systemic exposure is caused by 

OATP1B inhibition. Consistent with this hypothesis, PROB inhibited OATP1B1- and 

OATP1B3-mediated transport of CPI in a concentration-dependent manner, with IC50 values of 

167 ± 42.0 and 76.0 ± 17.2 µM, respectively, in transporter overexpressing HEK cell assay. The 

inhibition potential was further confirmed by CPI and CPIII hepatocyte uptake experiments.  In 

contrast, administration of PROB alone did not change AUC(0-24h) of HDA and TDA relative to 

prestudy levels although the administration of PROB in combination with FSM increased HDA 

and TDA levels compared to FSM alone (1.02 ± 0.18- and 0.90 ± 0.20 versus 1.71 ± 0.43- and 

1.62 ± 0.40-fold). Taken together, these findings indicate that PROB displays weak OATP1B 

inhibitory effects in vivo and CP is a sensitive endogenous probe of OATP1B inhibition. This 

study provides an explanation for the heretofore unknown mechanism responsible for PROB’s 

interaction with other xenobiotics.  

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on July 28, 2020 as DOI: 10.1124/dmd.120.000076

 at A
SPE

T
 Journals on A

pril 10, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD-AR-2020-000076 

 

 5 

SIGNIFICANCE STATEMENT  

This study suggested that PROB is a weak clinical inhibitor of OATP1B based on the totality of 

evidence from the clinical interaction between PROB and CP, and the in vitro inhibitory effect of 

PROB on OATP1B-mediated CP uptake. It demonstrates a new methodology of utilizing 

endogenous biomarkers to evaluate complex DDI, providing explanation for the heretofore 

unknown mechanism responsible for PROB’s inhibition. It provides evidence to strengthen the 

claim that CP is a sensitive circulating endogenous biomarker of OATP1B inhibition. 
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INTRODUCTION 

It is well established that membrane-bound transport systems are primarily critical 

determinants in the cellular traffic and disposition of exogenous and endogenous compounds.  

Notably, organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 can govern the 

disposition of drug substrates including the widely used HMG-CoA reductase inhibitors (statins). 

Moreover, it is increasingly recognized that endogenous biomarkers of OATP1B1 and 

OATP1B3 such as coproporphyrin I (CPI), CPIII, hexadecanedioate (HDA), and 

tetradecanedioate (TDA), and glycochenodeoxycholate-3-sulfate (GCDC-S), are useful tools in 

elucidating the role of OATP1B in complex drug-drug interaction (DDI) in healthy subjects and 

patients (Lai et al., 2016, Shen et al., 2016, Shen et al., 2017, Shen et al., 2018, Takehara et al., 

2018, Barnett et al., 2019, Yee et al., 2019, Jones et al., 2020, Mori et al., 2020). 

Probenecid (PROB) is widely used as a uricosuric agent (Cunningham et al., 1981). In 

addition, PROB has been used as an adjunct to enhance blood levels of antibiotics such as 

penicillins and cephalosporins due to an inhibitory effect on the renal transporters OAT1 and 

OAT3. In agreement, most of the drug-drug interactions (DDIs) involving PROB are due to its 

inhibition on the kidney transport of acidic drugs such as cefaclor (Welling et al., 1979), 

cefonicid (Pitkin et al., 1981), cefoxitin (Vlasses et al., 1980),  cephradine (Welling et al., 1979),  

dicloxacillin (Beringer et al., 2008), famotidine (Inotsume et al., 1990), and furosemide (Vree et 

al., 1995, Shen et al., 2019a). As a result, the US Food and Drug Administration (FDA) suggests 

PROB as an index inhibitor to assess OAT1 and OAT3 in clinical DDI studies 

(https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-

table-substrates-inhibitors-and-inducers). However, knowledge of the transporters involved in 

PROB inhibition could be incomplete. For example, some studies showed that the action of 
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PROB at the renal level was not sufficient to account for several-fold serum level elevations 

encountered for drugs such as fexofenadine, statins, and methotrexate in humans and animals 

(Gewirtz et al., 1984, Yasui-Furukori et al., 2005, Liu et al., 2008, Kosa et al., 2018). As an 

organic acid, probenecid increased the area under plasma concentration-time curve (AUC) of 

fexofenadine approximately 1.5-fold, by interfering with secretion of fexofenadine by the renal 

tubules in humans (Yasui-Furukori et al., 2005, Liu et al., 2008). The total and renal clearance 

(CLR) values of fexofenadine were 16.0 and 6.2 L/h (Lappin et al., 2010). Given the fact that 

fexofenadine is 60% to 70% bound to plasma proteins (Molimard et al., 2004), the active tubular 

secretion contributes to approximately half of the CLR. As a result, inhibition of OAT3-mediated 

renal secretion clearance alone, which resulted in a decreased amount of dose excreted in urine 

from 11-12% to 6-8%, cannot explain the observed AUC change (Yasui-Furukori et al., 2005, 

Liu et al., 2008). Moreover, studies in cynomolgus monkeys and rats have demonstrated that 

probenecid decreased the clearance of statins and methotrexate by the hepatic route as well 

(Gewirtz et al., 1984, Kosa et al., 2018), contributing to prolonged elevation of circulating statins 

and methotrexate levels. The reduction in hepatic uptake of statins in monkey hepatocytes and 

biliary secretion of methotrexate in rats is thought to arise from inhibition of hepatic uptake 

mediated by OATP in the presence of PROB. However, a direct interaction between PROB and 

OATP1B in humans has not been fully tested. 

Recent bioanalytical methodologies, especially metabolomics, have identified a number 

of endogenous biomarker candidates for the transporter proteins expressed in the organs of 

importance in drug disposition, including liver and kidney (Chu et al., 2018, Muller et al., 2018, 

Rodrigues et al., 2018, Shen, 2018). Changes in the levels of such endogenous probes were able 

to phenotype the mechanism of complex DDIs involving multiple elimination pathways. For 
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example, a clinical DDI study was conducted to assess the inhibition potential of fenebrutinib 

using midazolam (CYP3A), simvastatin (CYP3A and OATP1B), and rosuvastatin (BCRP and 

OATP1B) as drug substrates (Jones et al., 2020). Fenebrutinib increased the AUC values of all 

three probes 2- to 3-fold. However, there was no change in the plasma levels of CPI and CPIII, 

endogenous biomarkers of OATP1B1, suggesting that the DDIs were due to the inhibition of 

CYP3A and BCRP rather than OATP1B (Jones et al., 2020). The present studies were designed 

to evaluate the inhibitory effects of PROB on human OATP1B1 and OTP1B3 by analyzing 

OATP1B biomarker levels in a clinical study and evaluating coproporphyrin uptake in 

transfected cell lines and hepatocytes in the presence of PROB in order to determine whether 

PROB modulates OATP1B activity. 
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MATERIALS AND METHODS 

Reagents and Materials. CPI and CPIII were purchased as dihydrochloride salts from 

Frontier Scientific (Logan, UT).  HDA, TDA, carbamazepine, and high-performance liquid 

chromatography (HPLC) grade methanol, acetonitrile and water were purchased from Sigma 

Aldrich (St. Louis, MO). Rosuvastatin (RSV), E17βG, CCK-8, CPI-
15

N4 sodium bisulfate salt, 

HDA-d4, TDA-d4 and rifampicin SV (RIF SV) were purchased from Toronto Research 

Chemicals (North York, ON, Canada). Water-soluble probenecid sodium salt was purchased 

from Life Technologies (Carlsbad, CA). CPIII-d8 was synthesized at Bristol-Myers Squibb 

Company (Princeton, NJ). [
3
H]Estradiol-17β-D-glucuronide (E17βG) (38.8 Ci/mmol) and 

[
3
H]Cholecystokinin octapeptide (CCK-8) (92.5mCi/mmol) were purchased from PerkinElmer 

Life and Analytical Sciences (Waltham, MA). Charcoal stripped plasma was obtained from 

Bioreclamation IVT (Westbury, NY). Cryopreserved human hepatocytes from 2 female donors 

were purchased from Celsis In Vitro Technologies (Baltimore, MD) (Lot NRJ) and 

Bioreclamation IVT (Westbury, NY) (Lot BXW). Human plasma containing dipotassium EDTA 

was obtained from Biological Specialty Corporation (Colmar, PA). Cell culture reagents were 

purchased from Corning (Manassas, VA) and Life Technologies Corporation (Carlsbad, CA). All 

other reagents and chemicals used were of the highest grade commercially available. 

Clinical Drug Interaction Study between PROB and FSM. Plasma and urine samples 

were collected from an open label, single-dose, three-treatment , three-period clinical DDI study 

between PROB and FSM reported previously (Shen et al., 2019a). Briefly, fourteen male healthy 

Indian subjects who had a normal medical history and physical examination participated in the 

study. Each subject received 1,000 mg PROB alone (period 1), 40 mg FSM alone (period 2), and 

40 mg FSM at 1 hour after administration of 1,000 mg PROB (period 3) with a 1-week washout 
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between treatments. Subjects fasted the night before and until at least 4 hour (h) after 

administration of the drugs. PROB and FSM were administered orally with 240 mL of water. 

Blood samples (3 mL each) for determination of drug and transporter endogenous biomarker 

concentrations were obtained at predose and at 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 6.0, 8.0, 12.0, and 

24.0 h after dosing. Urine samples were collected during 0–8, 8–16, and 16–24 h postdose. 

Subjects were housed in a clinical facility 36 h prior to dosing in period 1, and blood and urine 

samples were also collected over 24 h prior to dosing to obtain the baseline levels of transporter 

endogenous biomarkers in the absence of drug. Plasma was separated immediately, and the 

plasma and urine samples were prepared into two aliquots and kept at -70°C until analysis using 

liquid chromatography–tandem mass spectrometry (LC-MS/MS)  (Shen et al., 2019a). 

Quantification of CPI and CPIII in Plasma and Urine by LC-MS/MS. Plasma and 

urine concentrations of CPI and CPIII were quantitated by using the methods developed 

previously (Kandoussi et al., 2018). 

Quantification of HDA and TDA in Plasma by LC-MS/MS. The bioanalytical 

analyses of HDA and TDA in plasma were performed as described in detail by Santockyte et al. 

(Santockyte et al., 2018).  

Inhibition Studies in OATP1B1- and OATP1B3-Expressing Human Embryonic 

Kidney (HEK) 293 Cells. The in vitro uptake experiments were repeated in at least two 

independent experiments. There are three replicates per experiment for each condition (n = 3). 

The stable OATP1B1- and OATP1B3-transfected and mock cells generated by Bristol Myers 

Squibb were cultured at 37°C in an atmosphere of 95% air/5% CO2 and subcultured once per 

week (Han et al., 2010, Shen et al., 2013). OATP1B1- and OATP1B3-expressing cells used in 

the current study were passaged less than 30 times, to retain consistent transporter expression 
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and functional activity. To assess the inhibition potential of PROB toward OATP1B1 and 

OATP1B3, CPI and radiolabeled probe substrates, as well as testing PROB at various 

concentrations using a protocol described previously (Shen et al., 2017, Panfen et al., 2019). In 

brief, transporter expressing cells were grown to confluence in poly-D-lysine-coated 24-well 

plates (BD Biosciences, San Jose, CA). At confluence, medium was aspirated, cells were rinsed 

twice with 2 mL of prewarmed Hanks' balanced salt solution (HBSS) (Mediatech, Manassas, 

VA; Catalog # 21-023-CM) and preincubated with 200 µL of the transport buffer (HBSS with 10 

mM HEPES, pH 7.4) containing PROB at concentrations ranging from 1 to 10,000 µM  for 30 

min at 37°C. Uptake was then initiated by the addition of 200 µL of the prewarmed transport 

buffer containing CPI (0.2 µM) or radiolabeled probe substrate (1 µM [
3
H]E17βG and 0.1 µM 

[
3
H]CCK-8 for OATP1B1 and OATP1B3, respectively). The probe substrate concentrations are 

well below the Km values. Incubation proceeded for 2 min at 37°C to ensure linearity with time 

(Supplemental figure S1). After 2 min, the uptake buffer was then removed and the cell 

monolayers were immediately washed three times with 1.5 mL ice-cold HBSS buffer to 

terminate the uptake process. To analyze the concentrations of radiolabeled compounds, cells in 

the dried plate were lysed with 300 µL 0.1% Triton X-100. Aliquots of 200 and 20 µL cell lysate 

were used for radioactivity counting and protein concentration analysis, respectively. After the 

addition of 5 mL of scintillation cocktail, radioactivity was measured on a dual-channel liquid 

scintillation counter, Tri-Carb 3100TR liquid scintillation counter (PerkinElmer Life Sciences, 

Boston, MA). To analyze the concentrations of CPI, cells in the dried plate were lysed in 300 µL 

2:1 (vol/vol) ratio of acetonitrile and 1M formic acid with CPI-
15

N4  (IS). The contents were 

filtered through a 96-well filter plate (0.45 µm low-binding hydrophilic PTFE) and the filtrate 

was dried under nitrogen gas. The dried contents were reconstituted in 80 µL of 1 M formic 
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acid/acetonitrile (20:80, vol/vol) and the concentration of CPI was measured by LC-MS/MS. 

Throughout the entire process, appropriate precautions were taken to minimize sample exposure 

to ambient light. Protein concentration of cell lysates was determined with the bicinchoninic acid 

protein assay kit (Pierce Chemical, Rockford, IL). Cellular uptake in OATP1B1- and OATP1B3-

HEK cells was normalized based on the protein amount in each well. 

Inhibition of CP Uptake in Human Hepatocytes by PROB. To further assess the 

inhibitory effect of PROB on OATP1B, the uptake of CPI and CPIII in human hepatocytes in the 

presence of PROB were examined using a protocol described previously, with some 

modification (Shen et al., 2016, Zhang et al., 2019). Briefly, transporter-qualified cryopreserved 

human hepatocytes from two female donors were thawed according to the vendor’s instructions 

(Bioreclamation IVT, Westbury, NY). The hepatocytes were then pooled by resuspending the 

cell pellet in Krebs-Henseleit buffer to give a cell density of 2 million viable cells/mL, which 

was determined by trypan blue staining (≥ 80% post-thaw viability). After cell suspensions were 

pre-warmed to 37°C, the uptake of CPI in hepatocytes in the presence and absence of an 

inhibitor (final concentration of 100, 300 and 1,000 µM PROB, and 200 µM RIF SV) was 

determined. The uptake study was initiated by adding an equal volume of CP solution to the 

hepatocyte suspensions at 37°C, resulting in a final cell density of 1 million viable cells/mL and 

a CP or RSV concentration of 1 µM. There was a 3-min preincubation with the inhibitors or 

control buffer with hepatocytes at 37°C before the initiation of uptake. At 0.25, 1, 1.5, and 5 min, 

100-µL reaction mixtures were removed and overlaid onto prepared 0.4-mL microcentrifuge 

tubes containing 50 mL 2 M ammonium acetate (bottom layer) and 100 µL filtration oil (top 

layer; 84.5:15.5 silicon oil-mineral oil mix, final density of 1.015). Samples were centrifuged 

immediately at 10,000g for 15 seconds using a benchtop centrifuge to pellet the cells. The tubes 
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were placed on dry ice, then cut, and the cell pellet was digested in a 2:1 (vol/vol) ratio of 

acetonitrile and 1M formic acid containing the IS at room temperature. The contents were 

filtered through a 96-well filter plate (0.45 µm low-binding hydrophilic PTFE) and the filtrate 

was dried under nitrogen gas. Finally, the dried contents were reconstituted in 80 µL of 1 M 

formic acid/acetonitrile (20:80, vol/vol) for LC-MS/MS analysis. Throughout the entire process, 

appropriate precautions were taken to minimize sample exposure to ambient light. 

LC-MS/MS Analysis of CPI and CPIII in Cell Lysates.  Cell lysate concentrations of 

CPI, CPIII, and RSV were measured by LC-MS/MS as described previously (Lai et al., 2016, 

Shen et al., 2016).  

Pharmacokinetic and Transport Analyses. The pharmacokinetic parameters of CPI, 

CPIII, HDA, and TDA were derived using Phoenix WinNonlin, version 8.1 (Certara, Princeton, 

NJ). Maximum plasma concentration (Cmax) and area under the concentration-time curve from 

time zero to 24 h (AUC(0-24h)) were obtained from plasma concentrations versus time data by 

performing a noncompartmental analysis with mixed log-linear trapezoidal method. Renal 

clearance (CLR) was estimated by the following equations: 

𝐶𝐿𝑅 =
𝐴𝑒(0−24ℎ)

𝐴𝑈𝐶(0−24ℎ)
 

where Ae(0-24h) is the cumulative amount excreted in the urine during the time interval from zero 

to 24 h. 

The concentrations required to inhibit transport by 50% (IC50s) of PROB towards 

OATP1B1- and OATP1B3-mediated uptake of CPI and radiolabeled probes were estimated by 

fitting the uptake data to the following equation using nonlinear regression approach (Phoenix 

WinNonlin, Certara; Princeton, NJ).   
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𝑉 = 𝑉0  ×  (1 −
𝐼ℎ

𝐼ℎ + 𝐼𝐶50
ℎ ) 

where V is the mean transporter-mediated uptake of substrate at 2 min observed at the given 

PROB testing concentration (I), V0 is the uptake in the absence of PROB, and h is the Hill slope 

factor. 

The hepatic uptake rate in the absence and presence of inhibitor was calculated based on 

the initial rate of uptake during the linear phase (up to 1.0 or 1.5 min). The uptake clearance 

(CLu) was calculated by dividing the uptake rate by the initial substrate concentration. Percent 

CLu inhibition was calculated using the following equation: 

𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 % =
𝐶𝐿𝑢 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑏𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟−𝐶𝐿𝑢 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟

𝐶𝐿𝑢 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑏𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟
 x 100  

Statistical Analyses. The results are expressed as mean ± standard division (SD) in the 

text and tables. To test for statistically significant differences in Cmax, AUC(0-24h) , and CLR 

among treatments (predose control, PROB, FSM, and PROB with FSM) in the clinical study, 

repeated measured one-way analysis of variance (ANOVA) was performed. When the F ratio 

showed that there were significant differences among treatments, the Tukey’s method of multiple 

comparisons was used to determine which treatments differ. All statistical analyses were carried 

out using GraphPad Prism version 8 (GraphPad Software, San Diego, CA), and a p-value of less 

than 0.05 was considered statistically significant. 
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RESULTS 

Effects of Administration of PROB on Plasma Levels of CPI and CPIII. The effect of 

PROB on the pharmacokinetics of CPI and CPIII, endogenous biomarkers of OATP1B1 and 

OATP1B3, was evaluated in both plasma and urine after administration of PROB alone, 

furosemide alone, and probenecid in combination with FSM in 14 subjects. The systemic 

exposures and CLR of CPI and CPIII are shown in Figure 1 and Table 1. The table also presents 

the statistical comparisons for each treatment relative to predose baseline. The administration of 

1,000 mg PROB alone and in combination with 40 mg FSM significantly increased Cmax and 

AUC(0-24h) of CPI and CPIII compared to the baseline (1.34- to 1.62-fold)  (Table 1) (p < 0.05). In 

contrast, the Cmax and AUC(0-24h) values were similar to the basal levels after administration of 

FSM alone (1.02- to 1.15-fold). These changes were not statistically significant (p > 0.05). 

Moreover, the CLR values of CPI and CPIII were not significantly changed in the presence of 

PROB compared to the baseline control although the mean CLR of CPIII increased by 1.34- to 

1.50-fold (Table 1) (p > 0.05), indicating no significant inhibition of the CLR of CPI and CPIII 

during PROB treatments.    

Effects of Administration of PROB on Plasma Levels of HDA and TDA. We also 

examined the effects of a single dose of 1,000 mg PROB, either alone or in combination with 40 

mg FSM on the plasma concentrations of HDA and TDA in healthy subjects. Figure 2 shows the 

arithmetic mean plasma concentrations ± standard deviation (SD) of HDA and TDA before the 

first dose of the study (predose) and during the 3 treatment phases. Table 2 shows the arithmetic 

mean ± SD of Cmax, AUC(0-24h), and the ratios of HDA and TDA. While pretreatment with PROB 

alone did not significantly alter the Cmax or AUC(0-24h) of HDA and TDA compared to baseline 

(0.73- to 1.02-fold)  (Table 1) (p > 0.05), the coadministration of PROB with FSM significantly 
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increased the systemic exposures of HDA and TDA by 1.62- and 2.27-fold compared to FSM 

alone (Table 2) (p < 0.05). In addition, administration of a single oral dose of 40 mg FSM alone 

resulted in less than a 1% change in the Cmax and AUC(0-24h) of HDA compared with the baseline 

controls (p > 0.05). In contrast, administration of FSM alone significantly decreased the Cmax and 

AUC(0-24h) of TDA compared with the baseline (0.61- and 0.76-fold, respectively) (Table 2) (p < 

0.05). Unfortunately, the amount of HDA and TDA excreted in the urine were not analyzed in 

this study. 

Characterization of PROB as an In Vitro Inhibitor of OATP1B1 and OATP1B3. To 

evaluate the inhibitory effect of PROB on OATP1B1 and OATP1B3, the uptake of 0.2 µM CPI 

(OATP1B1 and OATP1B3), 1 µM [
3
H]E17βG (OATP1B1), and 0.1 µM [

3
H]CCK-8 

(OATP1B3) were measured in the presence of increasing concentrations of PROB in transporter-

expressing cells. As shown in Figure 3, PROB inhibited OATP1B1- and OATP1B3-mediated 

uptake of CPI in a concentration-dependent manner with IC50 values of 167 ± 42.0 and 76.0 ± 

17.2 µM, respectively (Table 4). PROB showed very similar inhibition on the uptake of 

[
3
H]E17βG and [

3
H]CCK-8 by OATP1B1 and OATP1B3, respectively (IC50 values for 

OATP1B1 and OATP1B3 were 121 ± 7.5 and 147 ± 37.5 µM, respectively). 

Effect of PROB on CP Uptake in Hepatocytes. To further demonstrate the inhibition of 

PROB on the hepatic elimination of CP, the uptake of 1 µM CPI and CPIII in human hepatocytes 

was assessed. Figure 4 and Table 3 show the uptake of 1 µM CPI and CPIII into human 

hepatocytes in suspension in the presence of increasing concentrations of PROB. The CPI and 

CPIII influx was sensitive to the presence of PROB, as a PROB concentration of 100 µM 

reduced CPI and CPIII uptake by 12% and 33%, respectively, of the control. As the PROB 

concentration was raised, CPI and CPIII influx was further reduced, so that at 1,000 µM PROB, 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on July 28, 2020 as DOI: 10.1124/dmd.120.000076

 at A
SPE

T
 Journals on A

pril 10, 2024
dm

d.aspetjournals.org
D

ow
nloaded from

 

http://dmd.aspetjournals.org/


DMD-AR-2020-000076 

 

 17 

uptake has been inhibited by 56% (Table 3). The uptake of the reference substrate RSV (1 µM) 

also appeared to be inhibited to a similar extent by PROB in hepatocytes (Figure 4 and Table 3). 
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DISCUSSION 

The role and importance of OATP1B1 and OATP1B3 in the transport of drugs across the 

basolateral membranes of the hepatocytes are well recognized. It is within the last decade that the 

inhibition potential of a new molecular entity toward OATP1B transporter proteins has begun to 

be evaluated during drug discovery and development (International Transporter et al., 2010, 

Tweedie et al., 2013, Lee et al., 2017). For 34 small molecular drugs approved by the FDA in 

2017, OATP1B together with CYP3A4, played a significant role in mediating more than half of 

the drug interactions with AUC changes ≥ 5-fold (Yu et al., 2019). Moreover, it has become 

increasingly evident that endogenous biomarkers of OATP1B, for example CPI, can be used to 

evaluate complex DDIs for better DDI risk assessment and management based on a mechanistic 

understanding in healthy subjects and patients (Suzuki et al., 2019, Jones et al., 2020, Mori et al., 

2020). The described findings suggest that this is the case for PROB. This drug is regarded as a 

clinically efficient inhibitor of OAT1 and OAT3 since the benzoic acid derivative is known to 

compete for active renal tubular secretion primarily with acidic drugs (Maeda et al., 2014). 

Moreover, PROB has recently been identified as a weak inhibitor of the OATP1B-mediated 

transport of organic anions using a heterologous expression system (Hirano et al., 2006, 

Matsushima et al., 2008, Izumi et al., 2013, Izumi et al., 2016). Accordingly, the in vivo and in 

vitro inhibition potential of PROB toward OATP1B1 and OATP1B3 were investigated using the 

endogenous probes CPI, CPIII, HDA, and TDA.  

For the first time, the results of this study showed a significant increase in plasma 

concentration of CPI and CPIII [Cmax and AUC(0-24h)], endogenous probes of OATP1B1 and 

OATP1B3, in humans during PROB treatments compared to baseline levels (1.34- to 1.62-fold)  
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(Figure 1 and Table 1). These findings suggest that PROB inhibited the elimination of the 

endogenous substrates of OATP1B, and this might be explained by an inhibitory effect of PROB 

on renal and/or hepatic transporters as CPI and CPIII are excreted in not only bile but also the 

urine (Wolkoff et al., 1976, Lai et al., 2016, Shen et al., 2016). However, the renal clearance of 

CP was not significantly decreased by PROB (Table 1). When the plasma and urine findings are 

taken together, this suggests that the interaction occurs in the liver but not in the kidney. This is 

not unexpected because CPI and CPIII are not substrates for OAT1 and OAT3 (Bednarczyk and 

Boiselle, 2015, Shen et al., 2017, Kunze et al., 2018), although OAT1 and OAT3 are capable of 

transporting small anionic endogenous substrates (e.g. p-aminohippurate and estrone-3-sulfate) 

and xenobiotics (e.g. adefovir, benzylpenicillin, and FSM) (Inui et al., 2000, Shen et al., 2019b). 

By contrast, OATP1B1 and OATP1B3 were found to effectively mediate the uptake of CPI and 

CPIII, which is consistent with the anionic nature of these endogenous compounds (Bednarczyk 

and Boiselle, 2015, Shen et al., 2016, Shen et al., 2017). Very recently, Wiebe et al. investigated 

the effects of four commonly employed drug transporter inhibitors on cocktail drug 

pharmacokinetics (Wiebe et al., 2020). PROB treatment increased Cmax and AUC of RSV by 

328% and 123%, respectively. Although PROB decreased RSV CLR by 78%, its inhibition of 

renal clearance alone could not explain the pronounced AUC increase since approximately 28% 

of total body clearance of RSV was via the renal route. In line with the clinical data, a monkey 

transporter-mediated DDI study showed that PROB increased the AUC of RSV and pitavastatin 

by 2.6- and 2.1-fold, respectively (Kosa et al., 2018). In addition, PROB significantly inhibited 

the uptake of RSV and pitavastatin in monkey hepatocytes (Kosa et al., 2018). Therefore the 

interaction between PROB and statin might be attributed to the decreased hepatic uptake 

mediated clearance by monkey OATP1B. Likewise, PROB had an impact on the OATP1B-
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mediated uptake clearance of fexofenadine in humans since its inhibition of renal organic anion 

transporter alone could not explain the noted AUC change (Yasui-Furukori et al., 2005, Liu et 

al., 2008). However, we cannot exclude that the synthesis of CPI and CPIII may be altered by 

PROB treatment. Interestingly, the mean renal clearance of CPIII but not CPI was increased by 

PROB although the increase was not statistically significant compared to predose level (1.34- 

and 1.50-fold) (Table 1) (p > 0.05). Previously we reported that CPIII but not CPI was subject to 

active tubular secretion in the kidney of monkeys and humans (Lai et al., 2016, Shen et al., 

2016). One possible explanation for the unexpected increase of CPIII CLR is that PROB 

stimulated the function of transporter(s) responsible for the tubular secretion of CPIII. Such 

stimulation has been observed with many transporters such as MRP2 (Gilibili et al., 2017). In 

addition, it is possible that CPIII undergoes both renal tubular secretion and reabsorption, and 

PROB inhibited the renal reabsorption of CPIII, resulting in the increased net renal excretion 

clearance of CPIII. Future work needs to be done to confirm the hypotheses. Servais et al. 

previously studied urinary coproporphyrin excretion in rats after inhibition of transporters by 

PROB and in mutant transport-deficient (TR−) rats, in which MRP2 is lacking (Servais et al., 

2006). Total urinary coproporphyrin excretion was similar in TR− rats and in normal rats with or 

without treatment by PROB, but relative urinary CPI excretion was increased in the mutant rats. 

Moreover, PROB is a weak inhibitor of MRP2 that is expressed on the apical surface of renal 

proximal tubule epithelial cells and hepatocytes. CPI and CPIII are substrates for MRP2 (Gilibili 

et al., 2017, Kunze et al., 2018), and the urinary CPI/(CPI + CPIII) ratio was proposed as a 

surrogate for MRP2 activity (Benz-de Bretagne et al., 2011, Benz-de Bretagne et al., 2014). 

Unchanged CLR values of CPI in the subjects administered with PROB suggested that PROB did 

not affect MRP2 activity in the kidney in vivo (Table 1). The increased CLR of CPIII requires 
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further studies to identify the transporters responsible for the renal disposition of CPIII for better 

assessment of in vivo inhibition potential of an investigational drug using CPIII. Taken together, 

administration of PROB at a therapeutic dose can cause clinically relevant OATP1B inhibition. 

In agreement with clinical findings, the IC50 of PROB in OATP1B1- and OATP1B3-

HEK cells using CPI as a substrate is determined to be 167 and 76.0 µM, respectively, in this 

study (Figure 3). This is consistent with recent reports employing dichlorofluorescein, 

bromosulfophthalein, E17βG, estrone-3-sulfate, pitavastatin, and fexofenadine as OATPIB1 and 

OATP1B3 substrates (Hirano et al., 2006, Matsushima et al., 2008, Izumi et al., 2013, Izumi et 

al., 2016),  in which the IC50 of PROB ranged from 39.8 to 227 µM. Furthermore, 100, 300, and 

1,000 µM PROB reduced the uptake of CPI, CPIII and RSV in human hepatocytes in a 

concentration-dependent manner with maximum inhibition by 56%, 56%, and 73%, respectively 

(Figure 4; Table 3). The results suggested that PROB is a weak in vitro inhibitor of OATP1B1 

and OATP1B3. However, because the free maximum concentration at the inlet to the liver 

(Iin,max,u) following 1,000 mg  PROB administration is large [34.6 to 41.5 µM estimated by using 

the pharmacokinetic parameters reported previously (Shen et al., 2019a)], the predicted AUC 

ratio of a substrate drug of OATP1B in the presence and absence of PROB (R-value) is 1.46 to 

1.55 using the IC50 value of 76.0 µM determined using CPI as a probe substrate (R-value = 1 + 

Iin,max,u/IC50), suggesting an in vivo inhibition potential of PROB with OATP1B (Table 4). These 

R-values estimated using the method recommended in the EMA and FDA guidances 

(https://www.fda.gov/media/134582/download; 

https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-

interactions-revision-1_en.pdf) are consistent with the observed Cmax and AUC fold-changes of 

endogenous probes CPI and CPIII. It is critical to include sufficient subjects in a clinical study to 
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detect weak drug transporter interaction. Barnett et al. demonstrated the sensitivity of CPI to 

identifying weak OATP1B inhibitors in an adequately powered clinical study using mode-based 

simulations and power calculations (Barnett et al., 2017). The analysis showed the ability to 

identify a weak but clinically relevant OATP1B DDI using CPI as a probe (AUCR >1.25 cutoff). 

Use of criterion of α = 0.01 and power of 0.8 required a sample size of 15 subjects (Barnett et al., 

2017). This conclusion was further confirmed by CPI clinical data with several weak OATP1B 

inhibitors (Kunze et al., 2018, Liu et al., 2018). The clinical studies with 14 and 13 subjects 

indicated that CPI concentration changes were predictive for a weak clinically observed DDI 

where CPI AUC increases of 1.6- and 1.4-fold were comparable with those observed for statins 

as victim drugs (Kunze et al., 2018, Liu et al., 2018). Therefore, we believe that our data 

generated with 14 subjects is sufficient to support the conclusions made in this study. 

To quantify the response of HDA and TDA, two other endogenous probes of OATP1B 

(Yee et al., 2016, Shen et al., 2017, Yee et al., 2019), to PROB pretreatments in vivo, we 

measured the plasma HDA and TDA concentrations. The variations in plasma concentrations of 

HDA and TDA were larger than that of CPI and CPIII. The concentration-time profiles for HDA 

and TDA appear different between the PROB alone and PROB coadministration with FSM 

groups. While the administration of PROB in combination with FSM significantly increased the  

AUC(0-24h)  of HDA and TDA by 1.71- and 1.62-fold, respectively, compared to FSM alone, the 

administration with PROB alone did not significantly alter the AUC(0-24h) of HDA and TDA 

compared to prestudy levels (1.02- and 0.90-fold, respectively) (Figure 2; Table 2). It is unclear 

why the PROB pretreatments show different effects on the plasma HDA and TDA levels. 

Unfortunately, the CLR of HDA and TDA could not be determined in the urine. In addition, the 

treatment with FSM alone significantly decreased the AUC(0-24h) of TDA compared with the 
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predose control (0.76-fold) (Table 2). We cannot exclude that the synthesis of the biomarkers 

may be affected by PROB and/or FSM. These results suggest that plasma HDA and TDA levels 

may not be good surrogate endogenous probes for weak OATP1B inhibition.  

In conclusion, for the first time, our results demonstrate the weak inhibitory effect on 

OATP1B1 and OATP1B3 by PROB in vivo. Considering the fact that PROB is an index 

inhibitor for clinical OAT1/3 DDI study, these findings provide an explanation for the heretofore 

unknown mechanism responsible for the inhibition caused by PROB.  
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Figure Legends 

Figure 1. Effect of 1,000 mg probenecid (PROB) and 40 mg furosemide (FSM) doses on plasma 

concentration and renal clearance (CLR) of CP. The plasma concentration-time profiles of CPI 

(A) and CPIII (B) are shown as the mean and SD values obtained from 14 healthy subjects, 

before dose (open squares) and after a single oral dose of PROB (open circles), FSM (open 

triangles), and co-administration of PROB and FSM (open diamonds). The CLR of CPI (C) and 

CPIII (D) before and after the indicated treatment.  

 

Figure 2. Effect of 1,000 mg PROB and 40 mg FSM doses on plasma concentration of HDA and 

TDA. The plasma concentration-time profiles of HDA (A) and TDA (B) are shown as the mean 

and SD values obtained from 14 healthy subjects, before dose (open squares) and after a single 

oral dose of PROB (open circles), FSM (open triangles), and co-administration of PROB and 

FSM (open diamonds).   

 

Figure 3. Inhibitory effect of PROB on OATP1B1- (A) and OATP1B3-mediated transport of 

CPI and prototypical probe substrates. Uptake of 0.2 µM CP I, 1 µM E17βG (OATP1B1), and 1 

M CCK-8 (OATP1B3) was assessed in stably transfected OATP1B1- and OATP1B3-HEK cells 

over 2 min in the absence (control) or presence of PROB at the indicated concentrations. Uptake 

changes are normalized to transporter-mediated uptake in the absence of PROB. Results 

represent the mean and SD from three independent determinations. 
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Figure 4.  Inhibitory effect of PROB on the uptake of CPI (A), CPIII (B), and RSV (C) into 

human hepatocytes. Open circles, squares, triangles and diamonds, and closed circles represent 

the uptake of 1 μM substrate alone, with 100 μM PROB, 300 μM PROB, 1,000 μM PROB, and 

200 μM RIF SV, respectively. Results represent the mean and SD from three independent 

determinations. 
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Table 1. Comparison of pharmacokinetic parameters of CPI and CPIII in healthy subjects following administration of PROB 

(1,000 mg), FSM (40 mg), and co-administration of PROB and FSM. 

Treatment 
CPI   CPIII 

Cmax (nM) AUC(0-24h) (nM*h) CLR (mL/min)   Cmax (nM) AUC(0-24h) (nM*h) CLR (mL/min) 

Predose 1.34 ± 0.58 27.9 ± 11.5 18.6 ± 7.07   0.19 ± 0.08 3.54 ± 1.38 330 ± 210 

PROB alone 1.98 ± 0.74*** 41.1 ± 16.4*** 16.3 ± 4.77   0.26 ± 0.11*** 4.87 ± 2.22*** 414 ± 238 

Fold-Changea 1.54 ± 0.36 1.39 ± 0.21 0.97 ± 0.38   1.41 ± 0.22 1.34 ± 0.16 1.34 ± 0.53 

FSM alone 1.44 ± 0.37 28.4 ± 7.27 19.0 ± 7.96   0.21 ± 0.07 3.54 ± 1.28 312 ± 191 

Fold-Changea 1.15 ± 0.26 1.08 ± 0.27 1.10 ± 0.47   1.15 ± 0.32 1.02 ± 0.23 1.02 ± 0.50 

PROB + FSM 1.96 ± 0.47** 41.3 ± 9.75** 21.2 ± 6.67   0.29 ± 0.09*** 5.06 ± 2.03* 498 ± 247 

Fold-Changea 1.60 ± 0.50 1.57 ± 0.41 1.16 ± 0.51   1.62 ± 0.46 1.45 ± 0.57 1.50 ± 0.69 

Fold-Changeb 1.42 ± 0.39 1.58 ± 0.25 1.23 ± 0.65   1.43 ± 0.26 1.34 ± 0.35 1.51 ± 0.41 

 

Data represent the mean and SD from 9 to 14 subjects (n = 9-14); Cmax, maximum plasma concentration; AUC(0-24h), area under 

plasma concentration-time curve from time 0 to 24 h; CLR renal clearance.   

a
The fold-change values of Cmax, AUC(0-24h), and CLR are calculated using predose levels 

b
The fold-change values of Cmax, AUC(0-24h), and CLR are calculated using FSM alone 

*p < 0.05, **p < 0.01, and ***p < 0.001, statistically significant difference compared to the predose control 
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Table 2. Comparison of pharmacokinetic parameters of HDA and TDA in healthy subjects following administration of PROB 

(1,000 mg), FSM (40 mg), and co-administration of PROB and FSM. 

Treatment 
HDA   TDA 

Cmax (nM) AUC(0-24h) (nM*h)   Cmax (nM) AUC(0-24h) (nM*h) 

Predose 61.2 ± 34.2 884 ± 419   63.6 ± 47.9 787 ± 551 

PROB alone 60.1 ± 48.7 891 ± 444   45.4 ± 34.3 693 ± 415 

Fold-Changea 0.96 ± 0.29 1.02 ± 0.18   0.73 ± 0.25 0.90 ± 0.20 

FSM alone 63.2 ± 52.7 890 ± 592   42.7 ± 52.8*** 623 ± 585*** 

Fold-Changea 1.00 ± 0.34 0.99 ± 0.21   0.61 ± 0.17 0.76 ± 0.14 

PROB + FSM 123 ± 65.7** 1404 ± 540***   72.5 ± 52.9 919 ± 516* 

Fold-Changea 2.20 ± 1.26 1.66 ± 0.45   1.17 ± 0.49 1.22 ± 0.26 

Fold-Changeb 2.27 ± 1.06 1.71 ± 0.43   1.87 ± 0.86 1.62 ± 0.40 

 

Data represent the mean and SD from 14 subjects (n = 14); Cmax, maximum plasma concentration; AUC(0-24h), area under plasma 

concentration-time curve from time 0 to 24 h.   

a
The fold-change values of Cmax, and AUC(0-24h) are calculated using predose levels 

b
The fold-change values of Cmax, and AUC(0-24h) are calculated using FSM alone  

*p < 0.05, **p < 0.01, and ***p < 0.001, statistically significant difference compared to the predose control 
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Table 3. The hepatic uptake clearance of CP incubated in the presence and absence of PROB (100, 300, and 1,000 µM) 

Compound 

Hepatocyte Uptake Clearance (µL/min/10
6
 cells) (%Inhibition) 

Control 100 µM PROB 300 µM PROB 1,000 µM PROB 200 µM RIF SV 

CPI 2.1 1.9 (12%) 1.2 (42%) 0.93 (56%) 0.40 (81%) 

CPIII 4.3 2.9 (33%) 2.0 (53%) 1.9 (56%) 0.61 (86%) 

RSV 10.8 7.2 (34%) 4.9 (55%) 2.9 (73%) 0.73 (93%) 

 

The hepatic uptake clearance and percent uptake clearance inhibition were determined using the data in Figure 4. 
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Table 4. Prediction of OATP1B-mediated DDIs for PROB and FSM using R-value and endogenous biomarker methods 

Treatment Drug 
Cmax 

(µM)
a
 

fu
a
 

OATP1B1   OATP1B3   Observed Index Cmax and AUC Fold-Changes 

IC50 (µM)
b
 

R-

Value 
  IC50 (µM)

b
 

R-

Value 
  CPI CPIII  HDA TDA 

PROB 

alone 

1,000 mg 

PROB 
436 0.062 167 ± 42.0 1.25   76.0 ± 17.2 1.55   

1.54 

(Cmax) 

1.39 

(AUC) 

1.41 

(Cmax) 

1.34 

(AUC) 

0.96 

(Cmax) 

1.02 

(AUC) 

0.73 

(Cmax) 

0.90 

(AUC) 

FSM alone 
40 mg 

FSM 
4.1 0.023 30-300 

1.00-

1.01 
  >300 1.00   

1.15 

(Cmax) 

1.08 

(AUC) 

1.15 

(Cmax) 

1.02 

(AUC) 

1.00 

(Cmax) 

0.99 

(AUC) 

0.61 

(Cmax) 

0.76 

(AUC) 

PROB + 

FSM 

1,000 mg 

PROB 
325 0.062 167 ± 42.0 1.21 

  

76.0 ± 17.2 1.46   

1.60 

(Cmax) 

1.42 

(AUC) 

1.62 

(Cmax) 

1.45 

(AUC) 

2.20 

(Cmax) 

1.66 

(AUC) 

1.17 

(Cmax) 

1.22 

(AUC) 
  

 

Cmax, maximum plasma concentration; fu, unbound fraction; IC50, concentration required to inhibit transport by 50%; AUC, area 

under plasma concentration-time curve from time; R-value, ratio of OATP1B substrate AUC in the presence and absence of inhibitor 

calculated using the FDA method. 

a
Data obtained from (Shen et al., 2019a). 

b
Concentrations required to inhibit OATP1B1- and OATP1B3-mediated transport by 50% obtained from the present study and  

previously reported (Ebner et al., 2015). 
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