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Abstract 

Physiologically based pharmacokinetic (PBPK) models of small molecules have become 

mainstream in drug development and in academic research. The use of PBPK models is 

continuously expanding with the majority of work now focusing on predictions of drug-drug 

interactions, drug-disease interactions, and changes in drug disposition across lifespan. Recently, 

publications that use PBPK modeling to predict drug disposition during pregnancy and in organ 

impairment have increased reflecting the advances in incorporating diverse physiological 

changes into the models.  Due to the expanding computational power and diversity of modeling 

platforms available, the complexity of PBPK models has also increased. Academic efforts have 

provided clear advances in better capturing human physiology in PBPK models and 

incorporating more complex mathematical concepts into PBPK models. Examples of such 

advances include the segregated gut model with a series of gut compartments allowing modeling 

of physiological blood flow distribution within an organ and zonation of metabolic enzymes, and 

series compartment liver models allowing simulations of hepatic clearance for high extraction 

drugs. Despite these advances in academic research, the progress in assessing model quality and 

defining model acceptance criteria based on the intended use of the models has not kept pace. 

This review suggests that awareness of the need for predefined criteria for model acceptance has 

increased but many manuscripts still lack description of scientific justification and/or rationale 

for chosen acceptance criteria. As artificial intelligence and machine learning approaches become 

more broadly accepted, these tools offer promise for development of comprehensive assessment 

for existing observed data and analysis of model performance.  
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PBPK modeling has become a mainstream application in academic literature and is broadly used 

for predictions, analysis and evaluation of pharmacokinetic data. Many significant advances have 

been made in developing advanced PBPK models that better capture human physiology but 

oftentimes sufficient justification for the chosen model acceptance criterion and model structure 

is still missing.  This review provides a summary of the current landscape of PBPK applications 

used and highlights the needs for advancing PBPK modeling science and training in academia. 

 

  

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on February 7, 2024 as DOI: 10.1124/dmd.123.000960

 at A
SPE

T
 Journals on D

ecem
ber 20, 2024

dm
d.aspetjournals.org

D
ow

nloaded from
 

http://dmd.aspetjournals.org/


 5 

Introduction 

Physiologically based pharmacokinetic (PBPK) modeling is a computational technique that uses 

physiological information together with biochemical and physicochemical characteristics of the 

drug to simulate plasma, tissue and excreta concentrations as a function of time for drugs and 

their metabolites. All PBPK models consist of system components and drug specific components 

that are independent of each other. PBPK models can incorporate various levels of physiological 

complexity and drug elimination and distribution processes depending on the intended use and 

the level of knowledge of the characteristics of the drug. For example, a full body PBPK model 

will typically include majority of the defined organs in the body such as large distribution organs 

(muscle, skin, adipose, bone), main drug eliminating organs (liver, kidney, intestine), possible 

sites of drug administration (intestine, lung) and other organs of interest for drug distribution or 

action (heart, brain, pancreas, spleen). These tissue compartments are connected through the 

lungs via blood flow that includes venous and arterial compartments (Figure 1). In contrast, 

minimal PBPK models lump together many major organs or include a nonspecific distribution 

compartment (Jeong et al., 2022b; a), and typically incorporate only some, if any, organs of 

interest such as the liver, kidney or a target organ as individual organs (Figure 1). Depending on 

the research questions and intended use, the modeler can incorporate different types of organ 

models or levels of physiological information into the PBPK model leading to a great diversity 

and flexibility in the application of PBPK models. In addition, physiological models can be 

specific for a single organ and the relevant drug disposition processes in that organ, and used to 

only predict organ clearances. For example, a number of physiologically based models of the 

kidney have been developed (Neuhoff et al., 2013; Scotcher, Jones, Rostami-Hodjegan, et al., 2016; 

Huang and Isoherranen, 2018; Matsuzaki et al., 2019) to simulate renal clearance, and numerous 
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models exist for advanced modeling of oral formulations and intestinal absorption (Ahmad et al., 

2020; Jamei et al., 2020; Wu and Li, 2023).  

The use of PBPK modeling has increased continuously over the past 20 years (Sager et al., 

2015; El-Khateeb et al., 2021). PBPK modeling has been routinely included in regulatory 

submissions for over a decade (Zhao et al., 2011; Christian Wagner, Pan, and Hsu, 2015; Christian 

Wagner, Pan, Hsu, et al., 2015; C Wagner et al., 2015; Luzon et al., 2017; Grimstein et al., 2019; Zhang et 

al., 2020; Jean et al., 2021), and is frequently reported in research applications published in 

scientific literature (Sager et al., 2015; El-Khateeb et al., 2021). PBPK modeling approaches have 

now become standard in assessment of drug-drug interaction risk (Shebley et al., 2018; El-Khateeb 

et al., 2021) and have been used extensively to predict absorption kinetics and formulation effects 

(Ahmad et al., 2020; Jamei et al., 2020; Wu and Li, 2023). They are also increasingly used to predict 

pharmacokinetic changes in specific populations (pregnant and lactating individuals, patients 

with renal or hepatic impairment) and across lifespan (pediatrics, geriatrics), and in exploring 

drug exposures at target site or specific organ pharmacokinetics-pharmacodynamics (PK-PD) 

(Sager et al., 2015; El-Khateeb et al., 2021). Numerous reviews have addressed the use of PBPK 

models in regulatory decision making (Zhao et al., 2011; C Wagner et al., 2015; Luzon et al., 2017; 

Grimstein et al., 2019; Zhang et al., 2020; Jean et al., 2021) and the reader is referred to these reviews 

and references therein for insight on how PBPK modeling is used in the context of model 

informed drug design (MIDD)(Madabushi et al., 2022). For industry applications, the IQ group 

and several industry consortia have provided extensive reviews of the use and application of 

PBPK modeling in drug discovery and development (Shebley et al., 2018; Hariparsad et al., 2022). 

The current review is written from an academic perspective. It focuses on the progress made over 

the past decade in PBPK model development and use in research applications available in the 
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published literature, and summarizes the trends in model development, verification, and 

application workflows for different populations together with major advances made in 

developing more complex physiological models.  

 

PBPK Modeling Platforms and Data Availability  

The PBPK modeler has a choice between the use of existing, user friendly PBPK 

software packages with graphical user interphases (SimCYP, GastroPlus, PK-Sim, GI-Sim, 

Simbiology) in which the model structure is typically a priori defined, or making their own 

custom models using various programming approaches (Matlab, R, Mobi within PK-Sim, 

ADAPT and others). The versatility in modeling platforms increases the need for advanced 

training in programming languages and techniques and in model assessment and evaluation in 

pharmaceutical sciences. While training expectations in population PK approaches and statistical 

analyses are fairly mature, the didactic training required for competency in PBPK modeling is 

less well defined and can still vary considerably from institution to institution. Due to the 

increasing availability of easy-to-use mathematical modeling software and the expanding 

computational power and speed, the use of PBPK modeling is continuously expanding to more 

complex model structures and applications. This increases the need for the modeler to possess in-

depth mechanistic understanding of the underlying physiology and biochemistry of the 

developed PBPK models in addition to technical modeling expertise. Hence, academicians need 

to look into the future in terms of flexibility in curricula and training opportunities to prepare 

pharmaceutical sciences trainees to understand, use and advance PBPK modeling in a 

scientifically rigorous way. Similarly, funding agencies should assess whether the training 

currently provided across academic institutions is sufficient to ensure qualified workforce in this 
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area to address the needs of drug discovery and development and in clinical practice to improve 

patient outcomes.  

The PBPK modeling packages include open and closed source applications, and there are 

variable levels of transparency between software applications to the underlying model code and 

mathematical assumptions made in model development (Aldibani et al., 2023; Rajput et al., 2023). 

Understanding the model structure and how different components in the model are connected is 

integral for assessing the validity of developed models for applications that expand the use of the 

model to predicting disposition in unstudied scenarios. Such understanding is also needed when 

comparing PBPK models developed for the same drug but using different software packages or 

when transferring models from one platform to another. For example, when simvastatin PBPK 

models developed using Simcyp or PK-Sim platforms were compared, the authors noted that the 

choice of the model development strategy was different for the two platforms resulting in 

different model input parameters but similar model performance (Prieto Garcia et al., 2022). This 

highlighted the need for in-depth knowledge of the PBPK modeling platform and model 

structure (Prieto Garcia et al., 2022).  

There has been surprisingly little discussion in the scientific literature about the need for 

transparency in the underlying assumptions and construction of the models that are published 

regardless of whether the modeling platform is open or closed source. There is an increasing 

expectation that research become open (https://www.unesco.org/en/open-science) and the 

requirements for open science are increasing (McKiernan et al., 2016) With general data 

availability statements becoming commonplace, the lack of specific guidance on transparency 

and open access of PBPK models remains. At present there is no clear description of standards 

for research publications on making PBPK models publicly available and how to “Publicly share 
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data and materials via a trusted repository” (McKiernan et al., 2016). It has been recommended that 

“whenever it is feasible, the data, materials and analysis code used to generate the findings 

reported in one’s manuscript should be shared” (McKiernan et al., 2016) At present no publicly 

available trusted repository or database that would serve the community at large exist for PBPK 

models beyond databases that provide physiological parameters (Chang et al., 2021) or gene 

expression datasets (Cordes and Rapp, 2023). Most sharing of developed drug models occurs 

through proprietary databases of models developed for specific platforms and are restricted to 

user groups. As such the discussion and standards for reusability of models across platforms and 

users is still developing (Aldibani et al., 2023; Rajput et al., 2023).  

A distinct gap in tools that would facilitate open science for PBPK modeling is the lack of 

converters available to export models from different closed source software applications to a 

common language or another software package that could be read and interpreted by broad 

community of users. Such applications are exemplary in the mass spectrometry and proteomics 

fields where it is a standard expectation that raw data generated by a commercial platform can be 

converted to a format generally readable by the scientific community who do not have access to 

the specific vendor software. The lack of open tools within PBPK community slows down 

science due to redundant model development and duplication of efforts, hinders progress in the 

field due to lack of open exchange of scientific solutions and limits collaborative efforts between 

users of different modeling platforms.  

 

Model development, applications, and verification  

Reports of the use of PBPK models in scientific literature have increased rapidly over the past 

ten years (Figure 2). When the published literature was systematically reviewed in 2015 using 
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the search terms “PBPK” and “Physiologically based pharmacokinetic model” a total of 366 

PBPK-related articles were identified that included PBPK modeling of pharmaceutical agents in 

humans (Sager et al., 2015). A similar Pubmed search in July 2023 yielded 3,759 matches 

demonstrating the explosion in publications involving PBPK modeling. About 20% of these 

publications were identified as reviews or systematic reviews. Figure 2 shows the increase in 

publications mentioning PBPK over the past three decades.  The trend observed is very similar to 

that reported by others (El-Khateeb et al., 2021).  

The number of publications of PBPK models grew steadily between 2005 and 2018 but 

the number of publications per year has somewhat plateaued since 2018 regardless of the 

application of the PBPK model (Figure 2). It is possible that this plateau is related to the 

COVID-19 pandemic and does not reflect a longer-term trend. Future analyses will be needed to 

assess this trend. On the other hand, with PBPK modeling becoming a more mature field, it is 

also possible that the pace of advances in modeling has slowed, and some model development 

efforts have become standardized and no longer merit publication. As such, the number of 

publications should not be used as the sole indicator of how often PBPK modeling is used as part 

of a research program.   

When the distribution of the applications of PBPK models in the published literature was 

evaluated in 2015 the most common application for PBPK models was drug-drug interaction 

predictions (Sager et al., 2015). This trend continued throughout the decade following that review 

with drug interactions remaining the most common application of PBPK models with about 2-3- 

fold increase in the number of publications in this area each year (Figure 2). Use of PBPK 

modeling for predicting age dependent changes in drug disposition in different pediatric 

populations (neonates, infants, young children, adolescents) has also remained an important 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on February 7, 2024 as DOI: 10.1124/dmd.123.000960

 at A
SPE

T
 Journals on D

ecem
ber 20, 2024

dm
d.aspetjournals.org

D
ow

nloaded from
 

http://dmd.aspetjournals.org/


 11 

application with about 3-4 fold increase in yearly publications in this area. This reflects the early 

acceptance of PBPK for this application already reported in 2015 (Sager et al., 2015) and 

incorporation of PBPK modeling in drug development for pediatric populations (Freriksen et al., 

2023). In comparison, the use of PBPK modeling for organ impairment, pharmacogenetics or 

pregnancy saw about a 5-fold increase in the publications considering these areas (Figure 2) 

even though these areas of application remain a minority of PBPK modeling applications. The 

increase in the use of PBPK for specific populations reflects the advancements made over the 

past decade in understanding the diverse physiological processes and biochemical changes in 

these populations. This emerging understanding allows mechanistic modeling and prediction of 

drug disposition in these populations.  

To provide guidance to sponsors, regulatory authorities such as the FDA and EMA as 

well as OECD have developed guidance documents for how to evaluate PBPK models and verify 

their performance for intended use (https://www.fda.gov/regulatory-information/search-fda-

guidance-documents/use-physiologically-based-pharmacokinetic-analyses-biopharmaceutics-

applications-oral-drug-product, https://www.fda.gov/files/drugs/published/Physiologically-

Based-Pharmacokinetic-Analyses-%E2%80%94-Format-and-Content-Guidance-for-Industry.pdf 

https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-reporting-

physiologically-based-pharmacokinetic-pbpk-modelling-simulation_en.pdf, 

https://www.oecd.org/chemicalsafety/risk-assessment/guidance-document-on-the-

characterisation-validation-and-reporting-of-physiologically-based-kinetic-models-for-

regulatory-purposes.pdf). While these guidance documents focus on regulatory applications and 

do not address how PBPK models should be considered in research applications, they provide a 

roadmap for most modelers considering PBPK modeling for drugs and therapeutics in humans. 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on February 7, 2024 as DOI: 10.1124/dmd.123.000960

 at A
SPE

T
 Journals on D

ecem
ber 20, 2024

dm
d.aspetjournals.org

D
ow

nloaded from
 

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-physiologically-based-pharmacokinetic-analyses-biopharmaceutics-applications-oral-drug-product
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-physiologically-based-pharmacokinetic-analyses-biopharmaceutics-applications-oral-drug-product
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-physiologically-based-pharmacokinetic-analyses-biopharmaceutics-applications-oral-drug-product
https://www.fda.gov/files/drugs/published/Physiologically-Based-Pharmacokinetic-Analyses-%E2%80%94-Format-and-Content-Guidance-for-Industry.pdf
https://www.fda.gov/files/drugs/published/Physiologically-Based-Pharmacokinetic-Analyses-%E2%80%94-Format-and-Content-Guidance-for-Industry.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-reporting-physiologically-based-pharmacokinetic-pbpk-modelling-simulation_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-reporting-physiologically-based-pharmacokinetic-pbpk-modelling-simulation_en.pdf
https://www.oecd.org/chemicalsafety/risk-assessment/guidance-document-on-the-characterisation-validation-and-reporting-of-physiologically-based-kinetic-models-for-regulatory-purposes.pdf
https://www.oecd.org/chemicalsafety/risk-assessment/guidance-document-on-the-characterisation-validation-and-reporting-of-physiologically-based-kinetic-models-for-regulatory-purposes.pdf
https://www.oecd.org/chemicalsafety/risk-assessment/guidance-document-on-the-characterisation-validation-and-reporting-of-physiologically-based-kinetic-models-for-regulatory-purposes.pdf
http://dmd.aspetjournals.org/


 12 

In addition, they provide guidance on how to report PBPK models, and the recommendations 

from regulatory submissions can be adapted and refined for the scientific literature and research 

applications.  

One of the recommended criteria for PBPK model use has been to report a predefined 

model acceptance criterion for the developed model (Jones et al., 2015). When publications of 

PBPK models were reviewed in 2015, it was, however, noted that only about half of the 

published models specified a criterion for model verification a priori (Sager et al., 2015). When 

these criteria were reported, most commonly a 2-fold range for an observed pharmacokinetic 

parameter in comparison to predicted was considered acceptable. Some papers also used a more 

stringent (25-30% range within observed mean parameter) criterion. For drug-drug interaction 

models a 2-fold criterion for predicted and observed DDI magnitude was often used with some 

authors opting for a more stringent 30% of the observed change. It was noted that the choice of 

these acceptance criteria was not clearly justified in the papers and did not match the types of 

drugs (narrow therapeutic index, P450 sensitive probes), and that overall criteria for model 

acceptance were inconsistent. Others have also shown that the 2-fold criterion may in some cases 

be too liberal and in some cases too stringent due to the observed variability in the drug 

disposition characteristics and due to the small study populations in the observed datasets 

(Abduljalil et al., 2014). Yet, the theory and statistical analyses for PBPK model acceptance criteria 

have remained relatively rigid over the past decade.  

To evaluate whether model verification practices have changed since the review in 2015, 

a subset of published manuscripts describing PBPK models since 2015 were analyzed as a 

representative sample. To capture the most recent and up-to-date approaches the manuscripts 

published in 2022 were chosen for this evaluation. A Pubmed search of the PBPK models 
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published in humans for drugs during the year of 2022 yielded 382 published manuscripts. Of 

these, 71 were marked as reviews yielding a sample size of 316 manuscripts, a similar initial 

sample size as the 366 manuscripts identified overall for the 2015 analysis. These manuscripts 

were further reviewed for whether they specified the application of PBPK models reported and 

provided original PBPK model development yielding a dataset of 187 manuscripts. These 

manuscripts were then evaluated for the type of application, for the strategy of model 

development, model verification criteria and for the software used. As noted in the previous 

analysis as well, this sample size is likely an incomplete set of all the papers published for PBPK 

modeling in humans in 2022 but it is expected to represent adequately the use of PBPK models 

with the exception of absorption and formulation modeling which was not specifically searched 

for in the current review.  

Approximately half of the models in 2022 were developed to simulate drug-drug 

interactions, a larger fraction than what was reported by others (El-Khateeb et al., 2021). Of these 

reports half addressed PBPK modeling of metabolic drug-drug interactions involving inhibition 

and induction of predominantly cytochrome P450 enzymes but also other metabolic enzymes. 

About 20% of the published models considered drug-drug interactions involving drug 

transporters such as OATPs and kidney transporters such as OATs and MATEs. The remaining 

third of the drug-drug interaction studies included modeling pH dependent drug absorption 

interactions, mixed mechanisms of drug-drug interactions and drug interactions involving 

pharmacological activity. 

 Interestingly, use of PBPK modeling to simulate drug disposition in pediatric 

populations remained a common application with ~14% of the applications focusing on pediatric 

populations. The use of PBPK models to simulate the disposition of monoclonal antibodies 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on February 7, 2024 as DOI: 10.1124/dmd.123.000960

 at A
SPE

T
 Journals on D

ecem
ber 20, 2024

dm
d.aspetjournals.org

D
ow

nloaded from
 

http://dmd.aspetjournals.org/


 14 

remained somewhat rare accounting for ~5% of overall of the published papers. Many PBPK 

models (~10%) incorporated simulations of pharmacogenetic variation in the modeling 

approach. Ten (~5%) manuscripts described the application of PBPK modeling to pregnant 

populations to either predict drug disposition in the pregnant mother or to evaluate the fetal 

exposure and potential toxicokinetics in the fetus for the therapeutic agents. A total of 15 

manuscripts (8%) were identified that described PBPK modeling in renal or hepatic impairment 

populations. Of these, eight were for renal impairment/chronic kidney disease populations, four 

for hepatic impairment/liver disease and three that included both organ impairment populations. 

Overall the distribution of applications was relatively similar to that described in 2015. 

The use of PBPK modeling to predict drug disposition in populations with organ 

impairment (hepatic or renal impairment) is of special interest as organ impairment studies are 

often challenging to conduct, and the patients with organ impairment may be at increased risk of 

adverse events making dosage adjustment critical. Due to the complexity of multiple drug 

disposition mechanisms affected by organ impairment (altered liver or kidney blood flow, 

changes in protein binding, altered enzyme/transporter expression) the changes in drug 

disposition in different organ impairment scenarios can be difficult to predict using traditional 

static methods. Table 1 summarizes the 14 manuscripts published for organ impairment 

populations in 2022. These studies used a variety of simulation platforms/programs. For the renal 

impairment population three of the studies were conducted using PK-Sim platform (C Wu et al., 

2022; Dubinsky et al., 2022; Alsmadi and Alzughoul, 2023), three were conducted using Simcyp 

population simulator (Miao et al., 2022; Wang and Chan, 2022b; a) and one using Gastroplus (Y Xu et 

al., 2022). For hepatic impairment populations three of the studies were conducted using Simcyp 

(Watanabe et al., 2022; X Wu et al., 2022; Ladumor et al., 2023) and one using PK-Sim (L Xu et al., 
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2022). For the studies that considered both RI and HI populations one used PK-Sim (Fan et al., 

2022), one used Simcyp (Itohara et al., 2022) and one used Gastroplus (Zhao et al., 2022). This 

distribution of software packages differs somewhat from what was reported in 2015, perhaps 

unsurprisingly as software development is highly dynamic with new options becoming available 

frequently. One may also speculate that depending on the specific purpose of use of the 

developed model (Organ impairment, drug-drug interactions etc) certain software packages may 

be uniquely suited for such applications due to work and development that has been put into 

developing population models.  

 In terms of model acceptance criteria all but two  (Fan et al., 2022; Miao et al., 2022) of the 

manuscripts listed a predefined model acceptance criterion in the manuscript. The manuscript by 

(Miao et al., 2022) was unique as this study tested prospective prediction of dorzagliatin 

disposition in renal impairment population using PBPK modeling and hence observed data was 

not available for the modeling exercise for the intended use. The frequency of reporting model 

acceptance criteria and defining these criteria prior to model development and verification shows 

a clear increase in the awareness on the importance of defining model acceptance criteria a priori 

when compared to the status of the field in 2015. However, the diversity of approaches adopted 

for model acceptance was somewhat surprising. In some cases a calculation of acceptance 

criterion based on observed variability in vivo was used, in some cases an AAFE, AFE or percent 

error cutoff was applied and some publications still used a 2-fold criterion (Table 1). As already 

noted in 2015 (Sager et al., 2015) the acceptance criterion was not matched to the therapeutic 

index or sensitivity of a substrate and the 2-fold criterion was used for some drugs and scenarios 

where this is clinically likely too lenient (Table 1). A notable advancement with PBPK models of 

organ impairment is the inclusion of studies that combine drug interactions with organ 
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impairment scenarios. These applications provide an illustration of the flexibility of PBPK 

modeling to evaluate complex scenarios and provide guidance in situations where clinical trials 

may be very challenging. Similarly, the application of PBPK-PD in organ impairment 

populations is an important advancement in the field. 

Another area of interest for PBPK modeling is the use of PBPK models to explore drug 

disposition during pregnancy (Gaohua et al., 2012; Ke et al., 2012; Jing et al., 2017; Zhang and 

Unadkat, 2017; Zhang et al., 2017; Shum et al., 2021). There is a great need for reliable PBPK 

models to predict drug disposition during pregnancy as minority of the drugs given to pregnant 

women have ever been evaluated in pregnant women for PK or PD changes (Ke et al., 2014a, 

2018; Abduljalil and Badhan, 2020). Hence drugs are often given to pregnant women off-label 

despite the fact that the drug treatment may be critical for the survival of the mom and the health 

of the developing fetus. It is well established that pharmacokinetics of drugs changes during 

pregnancy due to multiple processes (change in blood flows and GFR, altered protein binding 

and albumin concentrations, increased or decreased CYP expression in the liver) and that these 

changes can be dependent on gestational age (Isoherranen and Thummel, 2013; Ke et al., 2014b). As 

pregnant women are a sensitive population, studying all the drugs given to pregnant women and 

incorporating all the different gestational stages into clinical studies is practically and ethically 

impossible. PBPK modeling can provide much needed information on prioritizing specific 

studies in pregnant women and in directing dosage adjustments and selection of therapies based 

on predicted exposures. PBPK modeling also provides a unique opportunity to predict maternal-

fetal disposition of drugs and fetal exposures to the drug of interest (Zhang and Unadkat, 2017; 

Zhang et al., 2017; Shum et al., 2021; Balhara et al., 2022). This is especially important and 

significant as sampling of drug concentrations from the fetal compartment is not possible across 
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gestation and simulations of the fetal exposures can provide extremely valuable information 

about the risks and benefits of drug treatment to the fetus.  

 A decade ago about 2% of the publications describing PBPK models addressed 

pregnancy as the target application (Sager et al., 2015). In the current analysis pregnancy modeling 

had increased.  Of the 187 manuscripts published in 2022 that were reviewed ten (~5%) 

described the application of PBPK modeling to pregnant populations to either predict drug 

disposition in the pregnant mother or to evaluate the fetal exposure and potential toxicokinetics 

of the therapeutic agents in the fetus (Table 2). The majority (n=5) of the pregnancy PBPK 

models were constructed using Simcyp simulator (Abduljalil, Ning, et al., 2022; Abduljalil, Pansari, et 

al., 2022; Bukkems et al., 2022; Peng et al., 2022; Li and Xie, 2023), but other software packages such 

as R (n=2, (Chang et al., 2022; Kapraun et al., 2022)), PK-Sim (n=2, (Alsmadi, 2023; Liu et al., 2023)) 

and Gastroplus or combination of software platforms (Coppola et al., 2022) were also used. It is 

notable that R packages are particularly used for pregnancy modeling while none of the organ 

impairment applications used R. This is likely due to the toxicology applications and 

consideration within the pregnancy modeling and the broad use of R packages in the field of 

toxicokinetics. The review also revealed that all three major software packages, Simcyp, 

Gastroplus and PK-Sim include pregnancy models within the software package facilitating 

applications of PBPK modeling to predicting drug disposition during pregnancy, maternal-fetal 

distribution of drugs and potential toxicokinetics during pregnancy. 

Within the pregnancy applications a variety of model acceptance criteria were used 

within and between the studies and majority of the studies defined model acceptance criteria in 

model development workflow (Table 2). Four studies stated that model performance was 

evaluated based on visual comparison of predicted and observed data (Abduljalil, Ning, et al., 2022; 
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Chang et al., 2022; Alsmadi, 2023; Liu et al., 2023), while one study assessed the correlation between 

predicted and observed data (Kapraun et al., 2022). Two studies used the 90% predictive interval as 

the range that observed data needed to be within (Alsmadi, 2023; Li and Xie, 2023) and one 

specified a visual comparison of the observed mean plasma concentration-time curve and the 

predicted 5-95
th

 percentile (Coppola et al., 2022). Two of the papers (Abduljalil, Pansari, et al., 2022; 

Peng et al., 2022) specifically noted that the observed plasma concentration-time curve had to be 

within the 5
th

 and 95
th

 percentile of the simulated. Similarly two papers (Bukkems et al., 2022; Peng 

et al., 2022)  established a stringent criteria for predicted pharmacokinetics parameters with 0.8-

1.25 fold (bioequivalence) or 0.7-1.3-fold (narrow therapeutic index), respectively. The 2-fold 

range of pharmacokinetics parameters was also used in two studies (Li and Xie, 2023; Liu et al., 

2023).  

The pregnancy PBPK models included a diversity of verification datasets to assess model 

performance. Many of the pregnancy applications were based on previously developed PBPK 

models that had been already assessed for model performance in nonpregnant population (Table 

2). The pregnancy modeling was then undertaken to evaluate either maternal-fetal distribution in 

which case umbilical vein to maternal plasma ratios were often used for model verification, or to 

define the maternal PK during pregnancy. Most of these models followed the generally 

recommended workflow where the drug model was verified in nonpregnant population prior to 

applying it to pregnant population. Taken together these models show the increasing trust in 

PBPK modeling in evaluating drug disposition during pregnancy. A notable advancement was 

the incorporation of the mechanistic kidney model into pregnancy PBPK modeling for renally 

cleared drugs (Abduljalil, Ning, et al., 2022; Abduljalil, Pansari, et al., 2022; Coppola et al., 2022; Li and 

Xie, 2023) although it was noted that limited information is available for physiological changes in 
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the kidney during pregnancy and for how transporter expression changes in the kidney during 

pregnancy. Several of the papers (Bukkems et al., 2022; Peng et al., 2022) also used either perfused 

placenta studies or mechanistic modeling of the placenta to better predict maternal-fetal 

distribution. Taken together this review shows significant advances over the past decade in the 

mechanistic PBPK modeling of drug disposition during pregnancy. 

 

Different Model Structures and Approaches for Clearance Processes in PBPK models 

All PBPK models make some underlying assumptions regarding the physiological 

processes that govern drug elimination and distribution. All models also simplify the overall 

complexity of the human body. As usage of PBPK models has increased there has been a parallel 

increase in development of more complex models that attempt to better capture clearance 

processes, distribution characteristic, intestinal absorption, and drug administration via inhalation 

or transdermal routes. However, the models can only be as good as the underlying knowledge of 

the physiology and physiological parameters that are incorporated into the models. As model 

complexity increases it is becoming apparent that the knowledge of human physiology that 

governs drug disposition is a limiting factor for model development. The heterogeneity of many 

diseases and the corresponding heterogeneity in physiological changes is not yet well 

incorporated into current PBPK modeling frameworks. Some well-known deficiencies include 

the lack of knowledge of precise transporter expression in the human kidney tubular epithelial 

cells rather than whole kidney in vivo, the localization of the transporters at different subsections 

of the kidney, and the lack of knowledge on how pH gradients and tubular flows are altered in 

the different sections of the kidney when urine pH or flow is altered or in chronic kidney disease 

(Scotcher, Jones, Posada, Rostami-Hodjegan, et al., 2016). Similarly, the physiological changes 
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associated with pregnancy such as changes in liver and kidney blood flow, intestinal mobility 

and transit time, gastric emptying and active uptake transport in the intestine have not been well 

characterize and limit further PBPK modeling in pregnancy. It is also noteworthy that the 

understanding of detailed physiological changes that occur in various cancers and different 

stages of cancer progression or during treatment is limited. Due to the challenges in conducting 

detailed pharmacokinetic studies in these patient populations coupled with the narrow 

therapeutic index of most treatments, PBPK modeling has the potential to greatly improve dosing 

regimen design and individualized therapy in cancer chemotherapy but better data is needed in 

the general physiology to advance the field.  

Sensitivity analyses can be used to demonstrate that lack of such physiological 

knowledge has minimal impact on model performance in many cases. However, for drugs that 

have a high hepatic extraction ratio, such as THC or metoprolol for example, lack of knowledge 

about hepatic blood flow changes during pregnancy is a major challenge for modeling their 

disposition during pregnancy. Similarly, for drugs that have renal clearance that is sensitive to 

urine pH, the poor characterization on how pH gradients are established across the kidney during 

pregnancy or in disease states such as chronic kidney disease can confound model development. 

As such there is a continuous need for PBPK modelers to partner with scientists who can develop 

advanced tools of characterization of physiological processes and their alterations in disease 

states and apply these tools to practice in clinical research.   

The incorporation of more complex PBPK models into commercial software platforms 

has lagged behind academic research advances. For example, at the time of this writing the 

segregated gut model (Pang et al., 2017, 2020; Noh and Pang, 2019) has not been incorporated into 

commercial software packages despite the fact that it allows modeling the route dependent 
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metabolism of drugs that are subject to significant gut extraction. Typically, PBPK modeler can 

choose between approaching absorption kinetics using simple first order absorption model that 

incorporates the absorption constant ka and the fraction absorbed as predefined parameters, or 

using a more complex model that is typically a further developed version of the original 

advanced compartmental absorption transit (ACAT) model (Yu and Amidon, 1999). The 

advanced absorption kinetic models include the advanced dissolution absorption metabolism 

(ADAM) model in Simcyp, the advanced compartmental absorption and transit (ACAT) model 

in GastroPlus and a series compartment model in GI-Sim. All of these allow predictions of oral 

bioavailability based on physicochemical drug characteristics and experimental permeability data 

of the drug (Sjögren et al., 2016). These models provide advanced ability to model drug absorption 

from the intestine in a segmented fashion. They can account for the differences in gut wall 

permeability between different regions, differences in pH across different regions of the intestine 

and the heterogenous expression and localization of metabolic enzymes and drug transporters in 

the intestine. Although these models generally have similar structures, the predictive 

performance of the different gastrointestinal drug absorption models can be quite different 

(Sjögren et al., 2016).  

An important application of PBPK modeling and simulation of drug absorption and food 

effects (Tistaert et al., 2019; Riedmaier et al., 2020; Al Shoyaib et al., 2023). However, confidence in 

model predictions in this area is still moderate. A review of the literature and regulatory 

submissions suggested that PBPK modeling is typically used to attempt to predict food effects 

for BCS class II and IV drugs (Li et al., 2018). The reasoning for this was that BCS class I drugs 

typically are not subject to food effects and BCS class III drugs often involve transporters for 

absorption, an area for which food effects have not been mechanistically characterized(Li et al., 
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2018). The authors noted that in half of the PBPK modeling cases assessed, food effects were 

predicted within 1.25-fold and 75% of the simulations were within 2-fold. Yet, the authors 

concluded that caution should be exercised in determining the performance of PBPK models in 

this area (Li et al., 2018). In a separate case study assessment from several pharmaceutical 

companies, it was suggested that for immediate release formulations of BCS class I and II 

compounds, PBPK modeling can be used to predict lack of food effect and positive food effect 

(Tistaert et al., 2019). However, it was noted that the absorption model for such applications 

should be well validated, fasted state PK should be available and the model should be validated 

for clinical data on a food effect before extrapolation to expanded food effect simulations.  

Surprisingly in a subsequent industry perspective publication (Riedmaier et al., 2020)  BCS 

classification did not appear to affect the level of confidence in PBPK predictions of food effects. 

Majority of the food effects considered were predicted with high to moderate confidence leading 

to a recommendation to leverage PBPK modeling in assessment of food effects (Riedmaier et al., 

2020). However, overall confidence in PBPK modeling of bioavailability, bioequivalence and 

food effects is still weaker than many other applications and subject to active research.  In an 

FDA workshop regarding food effects and PBPK modeling, the topic of differences in input 

parameter values between software platforms was brought up and it was noted that there is a 

need for standardization on how data is generated in vitro to be used in PBPK modeling 

(Al Shoyaib et al., 2023). Recently PBPK modeling has also been expanded to model the drug-drug 

interactions resulting from acid reducing agents causing changes in gastric pH (Dong et al., 2020). 

This work suggested that such drug-drug interactions could be adequately predicted but further 

work is needed with modeling drugs which are affected significantly by changes in gastric pH.  
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The compartmental absorption models have been noted to result in many ordinary 

differential equations for which solutions are computationally facile (Nagar et al., 2017). As an 

alternative continuous absorption models have been developed (Willmann et al., 2004; Nagar et al., 

2017). In these models physiological values such as surface area, pH and experimental velocities 

were incorporated into the model together with specific cellular characteristics of the enterocyte 

across the length of the intestine.  Physicochemical characteristics governing the absorption of 

oral solutions and solid dosage forms were also incorporated and the oral absorption of a series 

of model drugs was well predicted. However, these continuous models are yet to be incorporated 

into commonly used PBPK software platforms.   

A weakness of the currently commonly used compartmental absorption models is that 

they do not adequately capture the impact of intestinal physiology on systemic clearance of 

drugs.  In the segregated gut model the intestinal compartment includes the inert serosa and the 

active enterocyte regions as separate compartments and the blood flow to each of these 

compartments is segregated (Pang et al., 2017). This is in contrast to the conventional models in 

which the serosa and enterocytes are considered a single well mixed compartment. Unlike 

traditional intestinal models where the entire intestinal blood flow perfuses the entire gut 

compartment, in the segregated flow model only a fraction (5-20%) of the intestinal blood flow 

perfuses the enterocytes (Pang et al., 2017, 2020; Noh and Pang, 2019). Since the metabolically 

active and drug transporter expressing component of the intestine is the enterocyte compartment 

this segregation of the intestinal blood flow effectively reduces the contribution of the 

enterocytes to the systemic clearance of drugs while maintaining the contribution of the 

enterocyte metabolism in first pass metabolism during drug absorption. In other words, only a 

fraction of the drug in arterial circulation can access the enterocyte enzymes and transporters 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on February 7, 2024 as DOI: 10.1124/dmd.123.000960

 at A
SPE

T
 Journals on D

ecem
ber 20, 2024

dm
d.aspetjournals.org

D
ow

nloaded from
 

http://dmd.aspetjournals.org/


 24 

allowing >80% of the drug to bypass enterocyte metabolism during systemic clearance (Pang et 

al., 2020). This is important in particular for intermediate to high extraction substrates of 

CYP3A4 and UGTs for which both intestinal and hepatic metabolism are important, but the 

model has also been shown to provide improved data on drug-drug interactions when both the 

inhibitor and substrate are administered po (Pang et al., 2020). In addition, a relatively 

comprehensive PBPK model of the intestine that combines the segmented gut concept allowing 

for simulation of enzyme and transporter expression patterns and the segregated flow concept 

has been developed (Pang et al., 2020). PBPK modelers should consider the segregated gut model 

for drugs that have relatively high clearance and are substrates for CYP3A4 or UGT enzymes. 

In recent years the modeling of hepatic clearance in PBPK models has received 

considerable attention. In addition to number of publications in the overall hepatic clearance 

models for static predictions and pharmacokinetic data analysis, attention has been paid to 

whether the well stirred model of the liver is the most appropriate model to use in PBPK models 

(Li and Jusko, 2022, 2023b; a). At present commercial PBPK modeling packages as well as 

majority of custom made PBPK models incorporate hepatic clearance according to the well 

stirred model. The incorporation of the dispersion model of hepatic clearance, the most 

physiologically sound model of hepatic clearance (Pang and Rowland, 2019), has been 

computationally complex and hence limited (Li and Jusko, 2022). Instead, a series compartment 

liver model was incorporated into PBPK models to allow better simulation of hepatic clearance 

especially for high extraction ratio drugs (Watanabe et al., 2009; Li and Jusko, 2022). In the case of 

pravastatin, transporter contribution to the hepatic clearance was incorporated in the series 

compartment model and the preference for the series compartment model was justified due to the 

fact that dispersion model typically better captures hepatic clearance of high extraction drugs 
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(pravastatin has blood flow limited hepatic clearance in rats) (Watanabe et al., 2009). The PBPK 

model incorporated 5 liver compartments to appropriately capture hepatic extraction of 

pravastatin. When the dispersion model and series compartment model results were 

systematically compared 1, 2 and 5 series compartments were evaluated with a goal to explore 

the impact of the number of series compartments in model performance (Li and Jusko, 2022). As 

may be expected due to added degrees of freedom in the model, adding compartments resulted in 

challenges in parameter identifiability and the authors concluded that it may not be trivial to 

define the optimal number of compartments to include (Li and Jusko, 2022). A unique advantage 

of the series compartment model is that it allows modeling of the zonation of enzymes within the 

liver. This will likely provide improvements in simulations of high extraction compounds and 

their metabolites. Again, PBPK modelers are encouraged to carefully consider what is the most 

appropriate liver model to use in model development to best capture the disposition 

characteristics of their drug of interest.  

Renal clearance is one of the main elimination pathways for drugs and their metabolites 

but it has received much less attention than hepatic clearance in in vitro to in vivo predictions of 

drug clearance and in PBPK modeling. This is likely because renal clearance can often be well 

predicted via allometric scaling and/or using glomerular filtration rate (GFR) and plasma 

unbound fraction. Renal clearance is often included in PBPK models as simple clearance 

pathway without a complex physiological model of the kidney. However, allometric scaling can 

suffer from species differences in transporter expression, urine pH and differences in plasma 

protein binding (Scotcher, Jones, Posada, Galetin, et al., 2016). On the other hand, using static 

mechanistic modeling of renal clearance, passive reabsorption was shown to have a major impact 

on the accuracy of renal clearance predictions (Scotcher, Jones, Rostami-Hodjegan, et al., 2016). Of 
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the commercial PBPK modeling platforms Simcyp incorporates the option to use a 

physiologically based mechanistic kidney model (Neuhoff et al., 2013; Abduljalil, Pansari, et al., 

2022) but how widely this option is used is unclear. Mechanistic modeling of the kidney in PBPK 

models can accurately incorporate reabsorption processes as well as active transport based on in 

vitro data (Huang and Isoherranen, 2018; Matsuzaki et al., 2019). An open code mechanistic kidney 

model was developed (Huang and Isoherranen, 2018) and incorporated into full body PBPK 

model (Huang et al., 2020) to predict renal clearance from in vitro data, to simulate pH dependent 

renal clearance and to assess urinary metabolic ratios in a parent-metabolite system. Similarly, 

the impact of urine frow and urine pH on renal clearance was simulated using the Simcyp 

mechanistic kidney model (Matsuzaki et al., 2019).  

For modeling chronic kidney disease, several studies have been published in which the 

intact nephron hypothesis has been applied to PBPK modeling and mechanistic models of the 

kidney. The creatinine-drug interactions occurring between OAT2 inhibitors in different stages of 

kidney disease were simulated using a minimal physiologically based mechanistic kidney model 

(Takita et al., 2020). In a separate study a pyridoxic acid PBPK model was developed using 

Simcyp and the mechanistic kidney model adapted based on the intact nephron hypothesis for 

patients with chronic kidney disease (Tan et al., 2023). In this model the number of proximal 

tubular cells was decreased proportionately with GFR according to intact nephron hypothesis 

while the expression of OAT1/3 was decreased by additional 16%-50% from what would be 

proportional to GFR (Tan et al., 2023).  

The assumption of intact nephron hypothesis and decrease in OAT1/3 activity in chronic 

kidney disease may not be appropriate in all circumstances and is likely not physiologically 

accurate when considered in context of tubular fluid flow (Huang and Isoherranen, 2020a). 
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During kidney disease the kidney undergoes adaptations to maintain the fluid balance resulting in 

smaller fraction reabsorbed for permeable drugs under kidney disease than in healthy kidneys 

(Huang and Isoherranen, 2020a).  These alterations in urine and tubular flows were incorporated 

into a mechanistic kidney model in chronic kidney disease to predict renal clearance and the 

adaptation in tubular flows was shown to be necessary in modeling renal clearance changes for 

permeable drugs in chronic kidney disease (Huang and Isoherranen, 2020a). The decrease in 

OAT activity beyond what would be predicted by intact nephron hypothesis may be due to 

inhibition of these transporters by uremic solutes rather than additional downregulation of their 

expression (Chang et al., 2023). The impact of uremic solutes on kidney OAT activity and renal 

clearance of tenofovir in patients with renal impairment was simulated using the mechanistic 

kidney model (Chang et al., 2023). The importance of understanding the variability and individual 

changes in kidney blood flow, GFR, and transporter activity in progressive kidney disease was 

illustrated via use of the mechanistic kidney model to predicting drug clearance in chronic 

kidney disease in individual patients based on biomarker data of transporter activity in the kidney 

in the same individuals (Granda et al., 2023). Finally, in an effort to test whether data collected 

from microphysiological systems could be incorporated into PBPK models, the data of morphine 

and morphine glucuronide permeability and transport obtained in kidney tubule-on-a-chip model 

was incorporated into the mechanistic kidney model and the disposition of morphine and 

morphine glucuronide in patients with declining kidney function was predicted (Imaoka et al., 

2021). Taken together these examples show the power of mechanistic PBPK modeling of renal 

clearance and the potential to translate complex in vitro data into clinical pharmacokinetic 

predictions and clinical pharmacology. 
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Distribution kinetics, predictions of plasma concentration time curves and PBPK model 

design  

Over the past decades PBPK modeling has focused extensively on clearance predictions 

and different organ clearance approaches. However, one of the distinct advantages of PBPK 

modeling is that it allows mechanistic predictions, simulations, and analyses of distribution 

kinetics. Hence the shape of the plasma concentration versus time curve in addition to the area 

under the plasma concentration versus time curve (AUC) can be simulated based on mechanistic 

and preclinical data. Such predictions cannot be accomplished using compartmental models or 

static PK calculations without existing in vivo data. The complexity of predicting distribution 

kinetics is often overlooked in predictions of human drug disposition (Huang and Isoherranen, 

2020b), and the advantages of the use of PBPK models in distribution predictions and in  

predicting the half-life of new compounds have not been adequately recognized. Most PBPK 

approaches model distribution as a perfusion limited phenomenon. However, with the 

acknowledgment of transporter contribution to distribution and recognized permeability 

limitations in distribution, PBPK models are also incorporating more complex distribution 

assessment. For example, recently a new PBPK model termed ‘PermQ’ was developed that 

incorporates permeability considerations together with intracellular lipids (Korzekwa et al., 2022). 

This model advances the consideration for the complexity of tissue composition and capillary 

permeability and the simulation of distribution phenomena in and out of physiological 

membranes.  

A typical full body PBPK model will include blood flows to the individual organs and 

partition coefficients (Kp-values) to these organs (Figure 1). The Kp values refer to the tissue 

concentration (Ct) to plasma concentration (Cp) ratio at steady state (distribution equilibrium). In 
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other words, the Kp values are the concentration ratios for a specific organ or tissue that can be 

measured at steady state during an iv infusion. By use of the tissue specific blood flows and Kp 

values, the rate and extent of distribution to these organs can be simulated and together with 

clearance parameters this allows simulation of the overall plasma concentration time curve. 

Many methods for predicting tissue specific Kp values in silico have been published and 

the reader is referred to the original publications (Rodgers and Rowland, 2006; Poulin and Theil, 

2009; Poulin et al., 2011) and some of the relevant reviews for more detailed analysis of this topic 

(Zou et al., 2012; Holt et al., 2019; Utsey et al., 2020). One limitation for the in silico methods of Kp 

prediction is the lack of detailed information of the composition of human tissues and organs and 

the still rudimentary understanding of the distribution characteristics of drugs across different 

cell types within an organ. For example, current prediction methods do not generally consider 

heterogeneity of tissues/organs with multiple different cell types nor binding to intracellular 

proteins such as intracellular fatty acid binding proteins that are abundant across the body and 

bind numerous drugs (Yabut and Isoherranen, 2023).  The assumed partitioning to specific 

subcellular lipids (acidic, and neutral phospholipids, neutral lipids) is also typically predicted 

from systems such as water:octanol or water:vegetable oil partitioning that may be an inadequate 

reflection of the specific lipid partitioning, in particular for drugs with ionizable groups. These 

values are also often obtained from other in silico prediction systems that may not fully capture 

lipid partitioning. A note of caution should be made against the common practice of using 

uniform scaling factors to adjust in silico predicted Kp values to obtain a Vss value that matches 

an observed Vss or results in an apparent V value that allows an appropriate capture of the half-

life of a drug. There is no mechanistic or scientific basis to assume that the Kp prediction from 

the in silico methods would be equally incorrect for all organs. For example, in the “Rodgers and 
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Rowland” method the lipid composition and partitioning in each organ is considered to predict 

the Kp,u values, but the fraction of the tissue volume in the different lipid components is different 

and hence impacted differently for each organ (Rodgers et al., 2005). Species differences in the 

specific lipid content have also been noted resulting in discrepant tissue Kp,u predictions between 

species (Rodgers et al., 2012). How these differences impact extrapolation of Kp,u values from 

preclinical species to humans has not been fully elucidated and remains an area requiring further 

investigation. In the context of uniform scaling of Kp values, each organ has a unique and distinct 

effect on distribution kinetics, especially the rate of distribution, due to the different blood flows 

to the specific organs. It is important for the modeler to consider the scenario that a Kp error for 

the adipose or bone tissue will appear different in the simulation output than a similar magnitude 

of Kp error for the skin or muscle- two similarly sized organs.  

While use of in silico methods to predict Kp values is efficient and easy, more labor 

intensive and detailed experimental assessment of Kp values is recommended if the prediction of 

terminal half-life and distribution characteristics is desired. The predicted Vss if done based on in 

silico methods, also needs to be compared to some observed data. The modeler should  be aware 

that the terminal half-life observed and simulated is dependent on CL and V rather than Vss and 

hence accurate prediction of half-life using PBPK models requires appropriate identification of 

the main distribution organs that impact V. This may not be obvious from simple consideration 

of Vss. In cases where active transporters are involved in distribution kinetics the permeability 

limited distribution processes may have a disproportionate impact on V. In an ideal case, 

intravenous dosing data are available in humans which allows calculation of central compartment 

volume (Vc), Vss and V but such data are rarely available to the modeler.  Often iv dosing data 

are, however, available from preclinical species. If preclinical species data are available 
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following iv dosing the Vc and Vss can be determined in preclinical species and Vc and Vss in 

humans predicted using allometric scaling and the Øie-Tozer method (Øie and Tozer, 1979) that 

allows consideration of interspecies differences in unbound fraction in plasma. Notably, the 

distribution of the compound of interest to individual organs cannot be determined from plasma 

concentration-time curves. The determination of Vss even after iv dosing in humans can only 

provide an average Kp value for all organs combined. The assignment of the Kp values to specific 

organs is always subject to an identifiability problem. Several feasible approaches can be used in 

practice to acknowledge this challenge and capitalize on the power of PBPK modeling while 

acknowledging the lack of confidence in specific tissue Kp values. As one approach, the average 

Kp value can be calculated from Vss (either measured in humans or scaled from preclinical 

species) using the classic equation 𝑉𝑠𝑠 = 𝑉𝑝 + 𝐾𝑝 × 𝑉𝑇 and all organs can initially be assigned 

this Kp. The specific Kp -values for some of the large organs can then be optimized 

(proportionally increased and decreased) to capture the terminal half-life and early distribution 

phase of the drug of interest without altering Vss. The modeler can use qualitative knowledge of 

the lipid composition and the physicochemical characteristics of the drug to consider the most 

likely organs for which distribution is less or more extensive than the overall total body Kp value. 

This approach does, however, assume that reliable clearance values are known. As an alternative 

approach, the Kp values can be predicted using in silico methods and, as noted above, then 

optimized specifically to the large organs that result in detectable difference in the Vss prediction. 

In both cases it should be acknowledged that there are numerous combinations of tissue Kp 

values that will all yield equally good plasma concentration-time curves and these values are 

increasingly difficult to identify following non-iv dosing routes (Huang and Isoherranen, 2020b). 

Similarly the more organs that are included in the model the more degrees of freedom are present 
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in the model and hence the better the model fit is. As such the model generated specific tissue 

concentration curves should be interpreted with caution especially if the tissue concentrations are 

considered in light of pharmacological activity or toxicity. 

Experimental measurements of Kp values are beneficial for establishing specific tissue 

distribution characteristics. In particular, experimental verification of Kp values using preclinical 

models is useful if a PD component is included in the model to provide additional confidence for 

distribution kinetics to the site of action.  Additionally, if confidence is desired for the specific 

organs of distribution or for the rank order of Kp values between tissues, experimental 

verification is of value. An experimentally measured Kp value that is incorporated into a PBPK 

model should be the steady state equilibrium CT/Cp ratio. However, experimental Kp values are 

often measured during elimination phase following iv bolus in preclinical species. The tissue to 

plasma concentration ratio is not the same during the elimination phase of drugs as it is at steady 

state (Jeong and Jusko, 2022a).  This has been nicely shown via experimental studies in rats 

following dosing of ketamine (Edwards and Mather, 2001). The tissue to plasma concentration 

ratios were up to 10-fold greater during the terminal phase following iv-bolus than following iv 

infusion. This can be explained by arteriovenous differences in concentrations of ketamine and 

the clearance of ketamine during the elimination phase. The arterial concentrations perfusing the 

tissue are lower than the venous concentrations during the elimination phase and hence the tissue 

becomes a reservoir for the drug. The redistribution of the drug from the tissue may be much 

slower than the clearance leading to a higher concentration ratio between the tissue and plasma 

than what would be expected from a steady state Kp value. These Kp values measured during the 

terminal elimination phase can, however, be converted to the steady state Kp values for non-

eliminating organs using the Chen and Gross method (Jeong and Jusko, 2022b). For eliminating 
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organs the clearance parameters also need to be considered and the choice of the liver model 

impacts the ultimate calculation of the Kp value (Jeong and Jusko, 2022b; Li and Jusko, 2023b; 

a). As such it is important to appreciate the theoretical basis of Kp values incorporated in the 

models and the limitations of experimentally determined concentration ratios.  

Currently used criteria for model verification (AUC and Cmax fold differences) likely do 

not adequately explore whether distribution kinetics is appropriately described by the model and 

whether the shape of the plasma concentration-time curve is accurately captured. The AUC 

depends only on the bioavailable dose and the systemic clearance of the drug (AUC=FD/CL) and 

hence the AUCobserved/AUCpredicted reflects mainly the accuracy of simulations of oral and/or 

systemic clearance. This lack of sensitivity of AUC to the shape of the plasma concentration 

curve has been previously noted and a calculation of an exposure overlap coefficient (EOC) was 

proposed to compare the curve shapes between simulation and observed data (Holt et al., 2019).  

The EOC is the calculated fraction of the observed AUC that overlaps with the predicted and 

hence is always a value <1. When the EOC was used to assess model performance for a series of 

drugs the EOC values ranged from 0.71 to 1 (Korzekwa et al., 2022). At present no clear criterion 

has been proposed for acceptable range for EOC for fit for purpose modeling and further 

assessment of this approach is needed. For EOC one may also need to consider the model fit to 

the observed data to allow integrations of the C versus t data and comparison of the calculated 

areas for the simulated concentrations. In studies where noncompartmental modeling is typically 

used this may require further considerations of compartmental analysis of the observed data to 

accurately capture the observed area of the AUC that does not overlap with the simulation.  

 In addition to AUC, Cmax is usually included as an additional measure to determine 

model performance and whether distribution and clearance parameters are defined appropriately. 
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Cmax, however, has several weaknesses as an observed parameter. First, the observed Cmax value 

depends on the sampling schedule for the observed study and can be poorly defined value if 

sampling is too sparse missing the true Cmax or if the absorption kinetics are relatively slow such 

as with controlled release formulations when multiple sampling points result values close to the 

Cmax and tmax. Second, Cmax depends on multiple PK parameters and does not directly measure 

error in a given parameter. As such Cmax does not directly inform on any specific 

pharmacokinetic parameter and multiple parameter combinations exist to obtain Cmax estimates 

that are within acceptable range of observed data.  The observed Cmax depends on the 

bioavailability (F), volume of distribution,  tmax and elimination rate constant k of the parent drug 

all of which are defined by a combination of values inputted in a PBPK model. Of particular 

interest for PBPK modeling is the issue of Cmax and the impact of  V on Cmax. In classic 

pharmacokinetics following one compartment model Cmax is defined as 

𝐶𝑚𝑎𝑥 =
𝑘𝑎𝐹𝐷

𝑉(𝑘𝑎−𝑘)
[𝑒−𝑘𝑡𝑚𝑎𝑥 − 𝑒−𝑘𝑎𝑡𝑚𝑎𝑥] (Han et al., 2018). However, explicit solutions for Cmax do 

not exist for multicompartment models. Great majority of drugs display multicompartment 

behavior following iv administration and hence the interpretation of Cmax and error in Cmax 

simulations in PBPK models can be confounded  in the absence of iv data. It should be 

emphasized that models of distribution kinetics can only be appropriately verified if iv data 

exists. In the absence of iv data PBPK models have a parameter identifiability problem; it is not 

possible to differentiate the effect of ka, distribution rate ( in compartmental kinetics) and flip-

flop phenomena and multiple possible solutions can be obtained. Such confounding effects were 

illustrated when comparing simulated arterial and venous concentrations and observed arterial 

and venous concentrations of drugs (Huang and Isoherranen, 2020b).  Using buccal fentanyl as a 

model it was shown that the erroneous assumptions regarding distribution kinetics (comparing 
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observed venous to simulated arterial concentrations) could be “corrected” to yield an acceptable 

Cmax value by altering absorption kinetics(Huang and Isoherranen, 2020b). It should be 

emphasized that arteriovenous differences are specifically a distribution phenomenon and do not 

impact clearance which as a pharmacokinetic parameter is independent of distribution as long as 

true sampling is done for sufficient duration to capture terminal elimination phase and AUCinfinity. 

As models become more sophisticated the evaluation of model performance and 

transparency in confidence in model assumptions need to keep pace. For example, it is 

recommended that modelers asses the overall AAFE for plasma concentration time curves in 

addition to the accuracy of AUC predictions to establish how well distribution kinetics is 

captured as AAFE allows evaluation of the entire plasma concentration-time curve. Indeed such 

approaches are increasingly used in published PBPK models (Table 1 and 2).  

 

Future Opportunities for PBPK modeling 

PBPK modeling has become a mature field within pharmaceutical sciences and the use of 

PBPK modeling applications has broadened to include prediction of drug disposition in variety 

of complex patient populations. However, incorporating the diversity of academic advances in 

structural model development and incorporation of more complex physiological concepts in 

PBPK models is becoming a challenge to commercial software platforms. It is likely that more 

versatility will need to be incorporated into the “closed source” or “closed code” software 

packages to allow modelers to explore the best structural model for the specific purpose. While 

software packages are moving to this direction it is still hard to predict whether the regulatory 

requirements of model compatibility and validation can be maintained with increased modeling 
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flexibility. The computational speed may also become limiting with some of these extended 

capabilities.  

The expectations for model verification and validation have increased over the past 

decade and the use of independent model development datasets and model validation datasets 

have become well incorporated into the literature. In majority of the papers reviewed in detail for 

this analysis (Tables 1 and 2) the manuscripts stated a predefined acceptance criterion.  Notably, 

many models used for specific populations were also based on previously developed models for 

the specific compounds in healthy volunteers. During the model development and verification 

process, the limitation in many cases is the ability of the modeler to identify and capture all the 

available clinical data for a compound of interest and to assess in a statistically rigorous way 

whether the model is fit for purpose in light of all available data. In addition, while the overall 

model may fit predefined acceptance criteria this does not mean the developed model is the best 

possible model for the given data. The modeler will typically go through a subjective parameter 

optimization process that will allow “fit-for-purpose” applications. However, in any scenario 

there are multiple combinations of values that will provide a model that fits the acceptance 

criteria. Choice of the final best fit and weight put on specific clinical and in vitro data used in 

model development can be subjective and yield biased data. Novel computational approaches 

may address this issue. Such computational approaches include artificial intelligence (AI), 

machine learning and artificial neural networks (ANN)(Chou and Lin, 2023).  Proof of concept 

studies with ANNs have already been conducted and these studies have shown that ANN could 

predict patient plasma concentration-time curves when trained with PK data (Bräm et al., 2022).  

Similarly, a deep learning approach based on neural ordinary differential equations was used to 

predict PK data in previously unstudied scenarios (Lu et al., 2021).  
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For bottom-up PBPK model development most developed PBPK models already use 

some level of in silico predictions such as LopP values, pKa or Kp values although clearance 

predictions and permeability values still typically rely on experimental data. Machine learning 

methods are, however, increasingly used to generate the parameters used for PBPK model 

development(Chou and Lin, 2023). Machine learning is already available for many 

pharmacokinetic parameter predictions that have previously relied on mechanistic predictive 

equations (Chou and Lin, 2023) and several recent studies have incorporated AI and machine 

learning into PBPK modeling with AI and machine learning being used to generate specific 

parameters in bottom-up modeling (Chou and Lin, 2023; Chou et al., 2023; Habiballah and Reisfeld, 

2023). These AI assisted PBPK models at present typically use QSAR approaches that get 

incorporated into the PBPK model. For example a machine learning method was developed to 

predict Kp values simply from physicochemical parameters of a drug (Chou and Lin, 2023)  and 

the feasibility of use of machine learning methods to predict distribution characteristics was 

assessed in a pilot study of 12 drugs (Parrott et al., 2022).  

The model development process in PBPK applications that use so called “top down” or 

“middle out” approach could also benefit from artificial intelligence (AI) applications and  

machine learning. As such one can expect that AI will become incorporated into PBPK model 

development workflows to allow unbiased optimization of model parameters. AI can also likely 

in the future significantly improve the ability of the modeler to identify and summarize all 

available PK data in published literature and capture the reported pharmacokinetic data. Due to 

the expanding computational power, machine learning and AI methods will likely also assist in 

evaluating multiple different model structures and rapidly provide assessment of the various 
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organ models, level of complexity needed for distribution modeling and assessment of critical 

experimental data needed to provide confidence in PBPK estimates and predictions. 

In the top down and middle out approaches the modeler typically manually optimizes 

some parameters in the PBPK model to achieve a model that fits observed data within defined 

acceptance criteria. Typical parameters that are optimized include individual tissue Kp values, 

specific enzyme intrinsic clearance values and in some cases unbound fractions, bioavailability 

or transporter clearance but any model parameter could theoretically be optimized. This approach 

is often referred to as “learn and confirm”. As noted above multiple combinations of parameters 

can be identified that all result in acceptable solutions that fit pre-defined acceptance criteria. A 

modeler often struggles in deciding how to weigh individual studies in optimization process and 

how to develop a model that provides the closest comprehensive match to the totality of 

observed clinical data.  In addition, the optimization of parameters is time consuming and usually 

not automated relying on the knowledge and experience of the modeler to identify best 

parameters. It is conceivable that in the future this parameter optimization step could be done by 

an AI or a machine learning algorithm that samples a much greater space of possible 

combinations of optimized parameters and ultimately identifies the truly best model to fit to the 

collective clinical data available. AI applications can provide superior speed and power and 

enable consideration of large number of combinations of data for this purpose. 

One may speculate that in the future more mechanistic models will get incorporated into 

the AI applications that will allow automatic optimization of the PBPK model parameters and 

unbiased model development and optimization within a mathematically defined framework. This 

will likely lead to a need to develop novel PBPK modeling platforms that interface with 

advanced machine learning and AI applications. It is expected that the role of the modeler will 
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change with these developments and there will be a need to further define how such AI generated 

models can be evaluated during regulatory reviews and in scientific literature. 
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Figure captions 

Figure 1: Representative structures of a full body PBPK model (A) and a simplified lumped 

compartment PBPK model (B). 

 

Figure 2: Number of publications reported with PBPK modeling found in PubMed searches for 

the time window from 2015 to 2022. The total number of PBPK papers is shown as bar chart and 

the numbers of PBPK papers for select specific applications (drug-drug interactions, pediatrics, 

pharmacogenetics, pregnancy, and organ impairment) are shown in individual panels. The year a 

publication is listed is based on when the manuscript first appeared in PubMed (if ahead of 

print).  
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Tables 
Table 1. Summary of PBPK models published  in 2022 for organ impairment applications. N/A not available 

Drug Applica
tion 

Model 
structure 

CL 
prediction 

V 
prediction 

Population 
description 

Verification/
validation 

Acceptanc
e criterion 

Software PMID 

Acalabrutinib 
and 
metabolite 
ACP-5862 

BTK 
occupa
ncy PD 
(PBPK-
BO) 

Full 
PBPK 

Bottom 
up 

Rodgers & 
Rowland 

Healthy, HI Independent 
studies, DDI 

Fold error PK-Sim (L Xu et al., 
2022) 

Alprazolam, 
sirolimus, 
nifedipine, 
midazolam, 
felodipine, 
buspirone, 
ibrutinib 

Hepatic 
impair
ment 
and 
CYP3A4 
activity 

Minimal 
and full 
PBPK  

SimCYP 
library 
files with 
adjustme
nt 

SimCYP 
library files 
with 
adjustment 

Matched to 
observed, 
HI 

SimCYP 
library files 
with 
adjustment, 
iv and po 
data 

2-fold for 
PK 
parameters 

SimCYP (Ladumor et 
al., 2023) 

Baricitinib 
Tofacitinib 

Covid19
, 
geriatri
c, RI 

Minimal 
PBPK 

Published 
models, 
SimCYP 
library 

Published 
models, 
SimCYP 
library 

Similar to 
observed 

Previous 
studies, 
multiple 
populations 

1.84-fold 
AUCR 

SimCYP (Wang and 
Chan, 2022b) 

Bexarotene Prospec
tive 
predicti
on of 
PK in 
AKI and 
differen
t stages 
of CKD 

Full 
PBPK 

Middle 
out, 
scaling 
and in 
vivo PK 

Scaled to 
humans 
from rats 

Demograph
ics 
consistent 
with 
observed 
data, 
cancer 
population 

Sensitivity 
analysis,  

AFE within 
2 or 3 fold, 
95% 
predictive 
intervals 

PK-Sim (Alsmadi and 
Alzughoul, 
2023) 

Ciprofloxacin, 
furosemide, 
meropenem, 
acyclovir 

OAT 
expressi
on in 
CKD 

Full 
PBPK 

Bottom 
up (OATs, 
MATE, 
MRP, CYP, 
UGT) 

Rodgers & 
Rowland 

Healthy 
 RI 

Independent 
studies, DDI 

AFE 07-1,3, 
AAFE <2, 
85-95% of 
observed 
within 90th 
pred 
interval 

PK-Sim 
 

(Dubinsky et 
al., 2022) 

Dorzagliatin Prospec
tive 
predicti
on of RI 

N/A IVIVE Allometric 
scaling 

Healthy, 
T2DM 

Independent 
studies, DDI 

N/A SimCYP (Miao et al., 
2022) 

Esaxerenone Hepatic 
impair
ment  

Minimal 
PBPK 

In vivo PK In vivo Matched to 
clinical 

Independent 
studies, DDI 

DDI ratio SimCYP (Watanabe et 
al., 2022) 

Febuxostat Renal 
impair
ment 

Full 
PBPK 

In vivo Rodgers-
Single 

Healthy, 
gout 
patients 

Independent 
studies, gout 
patients 

% error GastroPlus (Y Xu et al., 
2022) 

Janaglifozin Renal 
impair
ment, 
Hepatic 
impair

Full 
PBPK 

PBPK 
from rat 
and dog 
and 
enzyme 

PBPK from 
rat and dog 

Similar to 
observed, 
renal and 
hepatic 
impairment 

Healthy 
individuals, 
T2DM HI and 
RI studies  

2-fold for 
fold 
change 

GastroPlus (Zhao et al., 
2022) 
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ment levels in 
humans 

Remdesivir 
and 
metabolites 

Predict 
hepatic 
and 
renal 
impair
ment, 
tissue 
PK of 
remdesi
vir 

Full 
PBPK 

Middle 
out 

Rodgers 
and 
Rowland 

Similar to 
observed 

Compared to 
healthy  

N/A PK-Sim  
(Fan et al., 
2022) 

Rivaroxaban 
or Warfarin 
with ritonavir 

Disease
-drug 
interac
tion, 
PD 
(INR) 

Minimal 
PBPK 

Library Library Prospective 
healthy, 
white 
Geriatric 
CKD, 
moderate 
impairment 

Independent 
validation for 
alternate 
substrate 
and dosing 

0.67-1.5 
0.7-1.43 

SimCYP (Wang and 
Chan, 2022a) 

Tacrolimus Renal 
and 
hepatic 
impair
ment 

Minimal 
PBPK 

Bottom-
up with 
ISEF 

In vivo data CYP3A5 
genotyped 
similar 
population
s 

Genotyped 
studies, 
healthy 

N/A SimCYP (Itohara et al., 
2022) 

Trelagliptin 
Oarigliptin 

DPP4 
occupa
ncy, RI 

Full 
PBPK 

GFR Rodgers 
and 
Rowland, Kp 
scale 

Japanese, 
European 

Independent 
studies 

AAFE 2-
fold 

PK-Sim-
MoBi 

(C Wu et al., 
2022) 

Treprostinil Extende
d 
release 
in 
Hepatic 
impair
ment 

Full 
PBPK 

In vivo, 
top down 
retrograd
e 

Rodgers 
and 
Rowland, In 
vivo 

Matched to 
clinical 

Independent 
studies (iv, 
po) 

% error 
<50% 

SimCYP (X Wu et al., 
2022) 
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Table 2. Summary of PBPK models published in 2022 for simulating drug disposition during pregnancy 

Drug Applicatio
n 

Model 
structur
e 

CL 
prediction 

V prediction Population 
descriptio
n 

Verification/val
idation 

Acceptance 
criterion 

Software PMID 

Cefazolin, 
Cefuroxime, 
Amoxicillin 

Maternal-
fetal 
concentra
tions. PK 
in 
pregnancy
, placental 
and fetal 
exposure 

fullPBPK 
with 
fetoplac
ental 
model 

Mechanis
tic kidney 
model 

Full PBPK 
model, 
Rodgers and 
Rowland 
method for 
Kp 

Pregnant 
and 
nonpregn
ant 
matched 
demograp
hics or 
default  

Prior models 
and data for 
nonpregnant. 
Multiple 
studies and 
populations 

N/A Simcyp (Abduljali
l, Ning, et 
al., 2022) 

Acyclovir, 
Emtricitabin
e, 
Lamivudine, 
Metformin 

Maternal-
fetal 
concentra
tions. PK 
in 
pregnancy
, placental 
and fetal 
exposure 

fullPBPK 
with 
fetoplac
ental 
model 

Mechanis
tic kidney 
model 

Full PBPK 
model, 
Rodgers and 
Rowland 
method for 
Kp with 
scaling 

N/A Prior models 
for 
nonpregnant 
used except 
lamivudine. 
Predicted 
compared to 
observed 

observed 
within the 
95th and 5th 
percentiles 
of predicted; 
predicted 
within 
twofold of 
the 
observed  

Simcyp (Abduljali
l, Pansari, 

et al., 
2022) 

Ampicillin Fetal and 
neonatal 
ampicillin 
concentra
tions for 
Streptoco
ccus 
infection 
treatment 

fullPBPK 
with 
fetoplac
ental 
model 

Top down 
(retrograd
e) for liver 
and biliary 
Mechanis
tic kidney 
model for 
CLr 

Full PBPK 
model, 
Rodgers and 
Rowland 
method for 
Kp  

 
Matched 
to 
observed 

FDA guidance 
workflow for 
healthy adults 
and pediatrics 

Observed 
within 90% 
prediction 
interval of 
the 
simulated 
curve. Two-
fold criterion 
for 
aggregate 
data 

Simcyp (Li and 
Xie, 
2023) 

Ritonavir 
boosted 
lopinavir, 
chloroquine, 
ivermectin 

Population 
drug-drug 
interactio
ns for 
COVID 
including 
special 
populatio
ns 

fullPBPK  Previously 
published 
and 
middle 
out, 
enzyme 
linetics 

Additional 
protein 
binding 
prediction 
for special 
populations. 
Poulin and 
Theil or 
Rodgers and 
Rowland 
prediction of 
Kp 

Similar to 
observed, 
1:1 male 
to female. 
The 
original 
PK-Sim 
pregnancy 
populatio
n was 
customize
d to 
include 
enzyme 
changes 

Historical PPK 
data in 
nonpregnant 
populations 

At least 85% 
of the 
observed 
data within 
the 90% 
predictive 
interval, 
Sensitivity 
analysis  

PK-Sim (Alsmadi, 
2023) 

Doravirine Predict 
maternal 
and fetal 

Full 
PBPK  

Previously 
developed 

Optimized 
from prior 
model. 

Nonpregn
ant 
individuals 

Independent 
data following 
iv and po 

predicted/o
bserved 
ratios for 

Simcyp (Bukkem
s et al., 
2022) 
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exposure Placental 
perfusion 
studies for 
fetal 
distribution 

dosing to 
nonpregnant 
individuals 

AUC, Cmax, 

and Ctrough 

between 0.7 
and 1.3  

 

General (859 
chemicals 
with human 
toxicokinetic 
data) 

Predict 
fetal 
exposure 
for 
toxicokine
tics 

7 
materna
l and 
fetals 
tissue 
and 
placent
a 

From prior 
work 

Measured 
partition 
coefficient 
when 
available. 
Prior models 

N/A Maternal-to-
fetal plasma 
ratio at birth 

N/A R 
 

(Kapraun 
et al., 
2022) 

Remdesivir 
and its GS-

704277 and 
GS-441524 
metabolites 

Translate 
prior 
nonpregn
ant model 
to 
pregnancy 

Full 
PBPK 
with 
adjustm
ents for 
enzyes 
and GFR 

From prior 
model 

From prior 
non-
pregnant 
model 

Matched 
to 
observed 

Previously 
published 
nonpregnant 
model, 
observed data 
in pregnancy 

AUC, Cmax 
and C24 
within 2-fold 

PK-Sim 
with MoBi 

(Liu et 
al., 2023) 

Ceftazidime, 
cefuroxime, 
metformin, 
oseltamivir, 
amoxicillin 

Assessme
nt of PBPK 
for renally 
cleared 
drugs 
during 
pregnancy 

Full 
PBPK. 
With 
ADAM 
or ACAT 

From prior 
models 
available 
in 
software 
libraries 

From prior 
models 
available in 
software 
libraries 

Matched 
to 
observed 

Independent 
nonpregnant iv 
and po data, 
pregnant 
population; 
visual 
comparison 

N/A Gastroplus
, Simcyp, 
PKSim 

(Coppola 
et al., 
2022) 

P-gp and 
BCRP 
transported 
drugs, 
nelfinavir, 
efavirenz, 
imatinib 

Fetal-to 
maternal 
unbound 
steady 
state 
plasma 
concentra
tion ratio 

Full 
PBPK, 
ADAM 
model 
for 
absorpti
on (N) 

Middle 
out back 
calculated 
CYP 
mediate 
clearance 
(N) 

Full PBPK 
with Kp 
predicted 
using Poulin 
and Theil 
method (N) 

Similar to 
observed 

Independently 
validated in 
nonpregnant 
subjects. Iv 
and po dosing 
data. 
Efavirenz and 
imatinib 
previously 
developed and 
validated for 
nonpregnant 

Observed PK 
profile was 
within the 
5th and 95th 
percentile of 
predicted 
and 
simulated 
data was 
within 0.8-
1.25 of 
observed 

Simcyp (Peng et 
al., 2022) 

Valproic acid Predict 
developm
ental 
toxicity of 
valproic 
acid 

Full 
PBPK 

Bottom 
up, IVIVE 

From 
literature 

N/A Simulated 
concentrations 
compared to 
toxicologically 
relevant 
concentrations 

N/A R, 
Gastroplus 

(Chang et 
al., 2022) 
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Figure 2
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