Regulation of drug metabolism by the interplay of inflammatory signaling, steatosis, and xeno-sensing receptors in HepaRG cells

Norman Tanner, Lisa Kubik, Claudia Luckert, Maria Thomas, Ute Hofmann, Ulrich M. Zanger, Linda Böhmer, Alfonso Lampen, Albert Braeuning

Supplementary figures and legends
Supplementary Figure 1. Cytotoxicity testing of HepaRG cells. Cells were incubated in the presence of increasing concentrations of an equimolar O/P (1:1) mixture (A, C) or in the presence of increasing concentrations of IL-6 (B, D). Incubation was performed for either 24h (A, B) or for 14 days with medium change and repeated treatment every 2nd day (C, D). Data from the MTT and CTB tests are depicted as means ± SD (two independent biological replicates, each assayed in quintuple technical replicates) and given relative to solvent-treated control cells (NC). PC (positive control): cells treated with 0.1% Triton X-100. The non-toxic concentrations of 10 ng/mL IL-6 and 125 µM O/P were selected for further analyses.
Supplementary Figure 2. Verification of cellular steatosis by Oil Red O staining. HepaRG cells were treated for 24h with control medium (A) or with 125 µM of O/P (125 µM of each of the fatty acids) (B) and images were taken under a light microscope. The scale bars in the images denote a distance of 200 µm. (C) For quantitative analysis of the dose-dependency of fat incorporation Oil Red O staining was measured on a multi-well plate reader following incubation of differentiated HepaRG cells with the indicated concentrations of O/P for 24h. Means + SD (assayed in quintuple determination) are given relative to untreated cells (set to 1)." A non-toxic and steatosis-inducing concentration of 125 µM O/P was selected for further analyses.
Supplementary Figure 3. Heat-map visualization of the expression of inflammation-related genes in HepaRG cells and their regulation by nuclear receptor agonists, O/P, and IL-6. Cells were treated according to the scheme presented in Figure 1 and mRNA expression levels were analyzed using a Fluidigm PCR system. For more details, please refer to the legend to Figure 2 and the raw data in Supplemental Table 1. Mean values (n=3 independent biological replicates) are given relative; asterisks indicate statistical significance in comparison to solvent control (p<0.05); hashmarks indicate statistical significance compared to solvent control of cells not treated with IL-6 and/or O/P.
Supplementary Figure 4. Heat-map visualization of the expression of fat metabolism-related genes in HepaRG cells and their regulation by nuclear receptor agonists, O/P, and IL-6. For more details, please refer to the legend to Figure 2 and the raw data in Supplemental Table 1. Mean values (n=3 independent biological replicates) are given; asterisks indicate statistical significance in comparison to solvent control (p<0.05); hashmarks indicate statistical significance compared to solvent control of cells not treated with IL-6 and/or O/P.
Supplementary Figure 5. Heat-map visualization of the expression of non-CYP genes related to phase I of drug metabolism in HepaRG cells and their regulation by nuclear receptor agonists, O/P, and IL-6. For more details, please refer to the legend to Figure 2 and the raw data in Supplemental Table 1. Mean values (n=3 independent biological replicates) are given; asterisks indicate statistical significance in comparison to solvent control (p<0.05); hashmarks indicate statistical significance compared to solvent control of cells not treated with IL-6 and/or O/P.
Supplementary Figure 6. Heat-map visualization of the expression of genes related to phase II or phase III of drug metabolism in HepaRG cells and their regulation by nuclear receptor agonists, O/P, and IL-6. For more details, please refer to the legend to Figure 2 and the raw data in Supplemental Table 1. Mean values (n=3 independent biological replicates) are given; asterisks indicate statistical significance in comparison to solvent control (p<0.05); hashmarks indicate statistical significance compared to solvent control of cells not treated with IL-6 and/or O/P.