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ABSTRACT 

An analysis of reported hepatic abundances of CYP3A4 and 3A5 indicated that values 

determined by immunoquantification using commercially available, unpurified recombinant 

enzymes as standards are significantly lower than those determined using purified enzymes or 

human liver microsomes characterised using lysozomal peptides (CYP3A4: mean 45 vs 121 

pmol/mg protein, p < 0.01; CYP3A5: mean 28 vs 83 pmol/mg protein, p < 0.05). When 

immunoquantifying CYPs it is assumed that the holo/apoprotein ratio is the same in the 

samples and the standard. Estimates of holo/apoprotein ratios from data reported for a range 

of CYPs purified from human liver and non-commercial recombinant systems indicated less 

than complete and variable haem coupling dependent on enzyme and system.    
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The absolute abundances of cytochrome P450 (CYP) enzymes in human liver, expressed as 

amount of enzyme per mg microsomal protein, are required for scaling of in vitro data on 

drug metabolism by recombinant CYP systems (rhCYP) to in vivo hepatic clearance (Barter 

et al., 2007). The use of inter system extrapolation factors (ISEFs) (Proctor et al., 2004) 

allows the differences in intrinsic activity (per unit CYP) between rhCYP and human liver 

enzymes to be accounted for. The corrected rhCYP in vitro data must then be combined with 

the abundance of the appropriate CYP enzyme in human liver as part of the scaling process. 

If such abundances are established for large numbers of individual human livers, it is possible 

to combine this information with activity per unit enzyme obtained with rhCYP systems to 

predict the distribution of drug clearance across populations, without the need to assess 

enzyme activity directly in large numbers of liver samples (Rostami-Hodjegan and Tucker, 

2007). The accuracy of such in vitro-in vivo predictions will clearly depend on the fidelity of 

estimates of individual CYP abundances in human liver. The latter are usually determined by 

immunoblotting (Laemmli, 1970) or Enzyme Linked Immunosorbant Assay (ELISA).  More 

recently, mass spectrometric methods have also been proposed for CYP quantification in 

human samples (Lane et al., 2004; Alterman, 2005; Jenkins et al., 2006). However, all of 

these methods measure apoprotein, which comprises active protein in which haem is 

incorporated (holoprotein) and that in which it is not. By contrast, only holoprotein is 

measured by carbon monoxide (Omura and Sato, 1964) or dithionite differerence 

spectroscopy (Matsubara et al., 1976). A variety of protein standards have been used to 

immunoquantify CYPs in human liver microsomes, ranging from enzyme purified to 

electrophoretic homogeneity from either liver microsomes or rhCYPs (Guengerich and 

Turvy, 1991; Shimada et al., 1994), human liver microsomes (HLMSTD; Westlind Johnsson 

et al., 2003) characterised using lysozyme-peptide conjugates (Edwards et al., 1998), to 

(more recently) commercially available (unpurified) rhCYP systems (Galetin et al., 2003; 
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Wang et al., 2005; King et al., 2003). An assumption in using any of these standards is that 

the holoprotein/apoprotein ratio is the same in the samples and the standard. To our 

knowledge the implications of this have never been assessed.  

The aims of this study were two-fold. Firstly, to carry out a meta-analysis of CYP3A4 and 

3A5 abundance values determined using different calibration standards, and secondly to 

assess holoprotein/apoprotein ratios from studies reporting the purification of CYPs from 

human liver and recombinant systems.  

 

METHODS 

Abundances of CYP3A4 and CYP3A5 in Human Liver. Values of human hepatic 

CYP3A4 and CYP3A5 abundance were collated from 2 electronic databases, “MEDLINE” 

and “Web of Knowledge”, and personal files of the authors (1990-2006) containing 

references from “Current Contents” and “Reference Updates”.  The authors of the original 

articles were contacted directly when further information was required. Only data from adult 

Caucasians (> 16 years) were included, and sources were verified to exclude duplication of 

individual data in the analysis. Geometric mean values of abundance were used to represent 

central tendency as the frequency distributions of the data were not normal (Kolmogorov-

Smirnov test ; SPSS v12, Chicago, USA). Overall weighted mean (WX) values of CYP3A4 

and CYP3A5 abundance were calculated using equation 1: 

 

∑
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Where there are “J” sources of data, n samples in each source and x  is the mean value from 

each data source. The weighted geometric mean values (WXgeo) were calculated using 

equation 2:  

 

2
geo ))CV(1(ln5.0)XW(LnXW +×−=    Equation 2 

  

Where CV is the coefficient of variation (%). 

 

Heterogeneity in the data was assessed from the homogeneity number (HMG), calculated 

using equations 3-5:  
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Where wj is the weight of each study based on the variance of the data and VWX is the 

variance of the weighted mean of all observations (1 to J).  
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The significance of differences between CYP3A4 and CYP3A5 abundance values 

determined from studies using rhCYP standards and those using HLMSTD or purified 

enzyme were assessed by Student’s t-test (Data Analysis Toolpack, Microsoft Office Excel 

2003). 

Determination of holoprotein/apoprotein ratios of purified CYPs. The “MEDLINE” 

database was searched for reports of CYP enzyme purification from both human liver 

microsomes and recombinant expression systems. The molecular weight (KDa) of each CYP 

(1A2 58.3; 2A6 56.5; 2B6 56.3; 2C8 55.8; 2C9 55.6; 2C19 56.0; 2D6 55.8; 2E1 56.9; 3A4 

57.3; 3A5 57.1) was used to calculate the expected specific enzyme content, assuming 100% 

holoprotein. The actual percentage holoprotein content of each preparation was calculated 

using equation 6 by comparing the measured value of the specific CYP content per mg total 

protein determined by spectroscopy with the expected value  

 

100  
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Equation 6 

Deviation of holoprotein protein contents from 100% were assessed for each CYP 

using the z-test. Differences in holoprotein content between CYPs were assessed by one-way 

analysis of variance (ANOVA) followed by Tukeys b post hoc test. 

RESULTS 

The analysis of CYP3A4 abundance values was based on 384 livers from 13 separate 

studies (Table 2). The overall weighted geometric mean value was 82 pmol per mg 

microsomal protein, and there was a 10-fold difference between mean estimates from 
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different studies. The homogeneity test gave an HMG of 37 (p < 0.001), indicating that the 

reported average values of abundance in these studies did not conform to a unimodal 

distribution. Accordingly, the mean value of CYP3A4 abundance determined from studies 

using rhCYP systems as the calibration standard was significantly lower (p < 0.01) than the 

mean value from studies using characterised human liver microsomes or purified enzyme (45 

vs. 121 pmol per mg microsomal protein). In all of the studies included in the meta-analysis 

rhCYP enzymes were obtained from commercial sources.   

The analysis of CYP3A5 abundance values was based on 45 livers from 7 separate 

studies (Table 3). The overall weighted geometric mean value was 55 pmol per mg 

microsomal protein, and there was an 8-fold difference between mean estimates from 

different studies. An HMG value of 53 indicated significant (p < 0.001) heterogeneity in the 

results of the different studies. Accordingly, the mean value of CYP3A5 abundance 

determined from studies using rhCYP systems as the calibration standard was significantly 

lower (p < 0.05) than the mean value from studies using characterised human liver 

microsomes or purified enzyme (28 vs. 83 pmol per mg microsomal protein). 

The percentage contributions of holoprotein to total CYP protein purified from human 

liver were found to be significantly less than 100% (p < 0.01 for CYP2C19 and p < 0.001 for 

CYPs 2C8, 2C9, 2D6 and 3A4) and the mean holoprotein/apoprotein ratio for CYP2D6 

preparations was significantly (p < 0.05) less than that of the other CYP preparations (Figure 

1A). There were also indications of inter-subject differences in holoprotein proportion, as 

exemplified by the analysis of data for CYP3A4 in preparations from 3 different livers 

purified in the same laboratory (Figure 1B). The percentage contributions of holoprotein to 

total CYP protein purified from rhCYP systems are shown in Figure 2. Unlike the rhCYP 
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preparations used in the meta-analysis of CYP3A4 and CYP3A5 abundance,  rhCYPs used to 

obtain purified enzyme were from non-commercial sources.  

 

DISCUSSION 

The study of CYP3A4 and CYP3A5 abundances in human liver indicated that the use 

of different protein standards may result in different values, with commercial rhCYP 

standards providing generally lower estimates than characterised human liver microsomes 

and purified enzyme preparations (Tables 1 and 2). A possible explanation for the latter 

observation is that different standards have different holoprotein/apoprotein ratios. Thus, if 

the standard contains a lower proportion of holoprotein than that in the samples, the same 

immunoblot signal will indicate a lower amount of active enzyme, resulting in an 

underprediction of active CYP abundance in the samples.  

Estimates of the holoprotein/apoprotein ratios of purified CYPs from human liver 

indicate incomplete heme coupling, and differences in this respect between specific CYPs 

and possibly between individual livers (Figure 1). While incomplete protein purification may 

explain the findings, it is unlikely that contamination would be more than 10% since loading 

of 5µg protein on a gel is usually sufficient to detect bands from other proteins running 

separately from the ‘pure’ enzyme. Thus, incomplete purification cannot account for the 

greater than 10% differences in holo/apoprotein ratios observed in many cases. If incomplete 

purification can be discounted, the observations are either due to incomplete haem 

incorporation in vivo or, experimental artefact (uncoupling of the haem from CYP protein 

during the purification process) or both. The latter assumes that the uncoupling happens to 

different extents in different purified systems.  In any event, the findings have important 
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implications for the immunoquantification of CYP abundances in human liver samples if 

there is a mismatch of the holoprotein/apoprotein ratio in standards and samples. Depending 

on the standard used, there could be either under- or over-prediction of CYP abundance.  

The estimated holoprotein contents of purified rhCYPs also suggest incomplete haem 

coupling. The majority of purified rhCYP preparations have a similar holoprotein/apoprotein 

ratio to that seen in the human liver preparations, suggesting that these would be suitable to 

use as standards for immunoquantification (Figure 2). However, the CYP2D6 preparations 

had higher holoprotein contents than that seen in the human liver preparations. Therefore, if 

these were used as a standard, a significant overprediction in CYP2D6 abundance would 

result. It should be noted that these rhCYP standards have not been produced for commercial 

use. The low estimations of CYP abundance indicated in Table 1 and 2 suggest that 

commercially available rCYP systems would have a lower holoprotein content than those 

shown in Figure 2. 

The observation that estimates of CYP3A abundances are lower when using 

commercially available rhCYP systems as standards relative to human liver standards could 

reflect a lower holoprotein/apoprotein ratio in these systems. To establish whether this is the 

case it would be necessary to show that the commercial rhCYP systems give a greater 

immunoblot signal for the same level of spectrally determined holoprotein compared to 

purified liver enzyme. Preliminary studies have suggested that this is the case for CYP3A4 

and CYP3A5 rhCYP systems (Wilson et al., 2005; Perrett et al., 2006).  This work is ongoing 

and we hope that the outcome will enable determination of appropriate correction factors to 

apply when measuring enzyme abundance with rhCYP systems. The utility of such factors 

would also depend on the extent of variability in the holoprotein/apoprotein ratio between 
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individual liver samples.  It is possible that the ratio of holoprotein to apoprotein might also 

be affected by genotype since single residue changes can markedly affect protein stability.   
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Figure Legends 

Figure 1:  (A) Mean percentage contribution of CYP enzyme holoprotein to total CYP 

protein in preparations purified from human liver tissue. Standard deviations are 

shown by error bars where the number of livers was sufficient for calculation.  

(B) Inter-individual variability in percentage contribution of holoprotein to total 

CYP3A4 protein purified from three individual livers (from Guengerich et al., 

1986).  

[References to the data for each of CYP in (A):  

1A2 = Dislerath et al., 1985; 2A6, Yun et al., 1991; 2C8 = Lasker et al., 1998, 

Wang et al., 1980, Wrighton et al., 1987a; 2C9 = Lasker et al., 1998, Sandhu et 

al., 1993, Lasker et al., 1987, Shimada et al., 1986, Komori et al., 1988, 

Kawano et al., 1987; 2C19 = Lasket et al., 1998, Lasker et al., 1987; 2D6 = 

Dislerath et al., 1985, Gut et al., 1984, Gut et al., 1986; 2E1 = Wrighton et al., 

1987, Lasker et al., 1987; 3A4 = Lin et al., 2002, Guengerich et al., 1986, 

Kawano et al., 1987, Watkins et al., 1985, Komori et al., 1988, Wang et al., 

1983.] 

 

Figure 2:  Percentage holoprotein contribution in preparations purified from recombinant 

CYP expression systems. For comparison, the dotted lines indicate the mean 

percentage holoprotein contribution observed for each CYP enzyme when 

purified from human liver tissue. 
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Table 1:  Literature values of mean CYP3A4 abundance.    

Purified enzyme (PUR), Baculovirus-insect cells (Supersomes–Gentest®) 

(SUP), human lymphoblastoid cells (Gentest®) (LYMPH), Saccharomyces 

cerevisiae (YEAST) and a sample of HLM quantified for total CYP3A4 protein 

(HLM-CYP3A4 Std) (Westlind-Johnsson et al, 2003). *Significant difference (p 

< 0.01) 

 

Study n 
Mean CYP3A4 

(pmol/mg) 
Standard 

Tateishi et al., 1999 15 49 SUP 

King et al., 2002 22 33 SUP 

Galetin et al., 2004 12 73 SUP 

Wang et al., 2005 5 37 SUP 

Wolbold et al., 2003 39 56 LYMPH 

Von Richter et al., 2004 15 24 LYMPH 

Mean  45*  

Guengerich and Turvy, 1991 36 248 PUR 

Shimada et al., 1994 28 106 PUR 

Wandel et al., 1998 14 68 PUR 

Lin et al., 2002 60 81 PUR 

Lamba et al., 2002 53 80 PUR 

Westlind-Johnsson et al., 2003 32 171 HLMSTD 

Barter et al., (in preparation) 53 91 HLMSTD 

Mean  121*  

Total Weighted Mean  82  
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Table 2:  Literature values of mean CYP3A5 abundance.    

Purified enzyme (PUR), Baculovirus-insect cells (Supersomes–Gentest®) 

(SUP), human lymphoblastoid cells (Gentest®) (LYMPH), E.Coli (Bactosomes-

Cypex®) (BAC) and a sample of HLM quantified for total CYP3A5 protein 

(HLMSTD) (Westlind-Johnsson et al, 2003). *Significant difference (p < 0.05) 

 

Study n 
Mean CYP3A5 

(pmol/mg) 
Standard 

Tateishi et al., 1999 6 30 SUP 

King et al., 2002 5 42 SUP 

Kamdem et al., 2004 5 13 BAC 

Mean  28*  

Kuehl et al., 2001 8 109 PUR 

Lin et al., 2002 13 78 PUR 

Westlind-Johnsson et al., 2003 3 44 HLMSTD 

Barter et al., (in preparation) 5 99 HLMSTD 

Mean  83*  

Total Weighted Mean  55  
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