RT Journal Article SR Electronic T1 In Vitro Metabolism of Rivoglitazone, a Novel Peroxisome Proliferator-Activated Receptor γ Agonist, in Rat, Monkey, and Human Liver Microsomes and Freshly Isolated Hepatocytes JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 1311 OP 1319 DO 10.1124/dmd.111.038729 VO 39 IS 7 A1 Minoru Uchiyama A1 Hiroko Koda A1 Thomas Fischer A1 Juergen Mueller A1 Naotoshi Yamamura A1 Minoru Oguchi A1 Haruo Iwabuchi A1 Osamu Okazaki A1 Takashi Izumi YR 2011 UL http://dmd.aspetjournals.org/content/39/7/1311.abstract AB The in vitro metabolism of rivoglitazone, (RS)-5-{4-[(6-methoxy-1-methyl-1H-benzimidazol-2-yl)methoxy]benzyl}-1,3-thiazolidine-2,4-dione monohydrochloride, a novel thiazolidinedione (TZD) peroxisome proliferator-activated receptor γ selective agonist, was studied in liver microsomes and freshly isolated hepatocytes of rat, monkey, and human as well as cDNA-expressed human cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT) enzymes. Fourteen metabolites were detected, and these structures were elucidated by liquid chromatography-tandem mass spectrometry. Five initial metabolic pathways of rivoglitazone consisting of four oxidation pathways and one N-glucuronidation pathway were predicted in correspondence with those proposed for in vivo studies using rats and monkeys. In metabolization using liver microsomes, the TZD ring-opened mercapto amide (M22) and TZD ring-opened mercapto carboxylic acid (M23) were identified as the primary metabolite of the TZD ring-opening pathway and its sequential metabolite, which have not been detected previously from in vivo studies. Combination with S-adenosyl-l-methionine was useful to obtain the sequential S-methylated metabolites from the oxidative metabolites. N-Glucuronide and sequential TZD ring-opened metabolites were also found in liver microsomes in the presence of UDP-glucuronic acid. The O-demethyl-O-sulfate (M11), which is the major in vivo metabolite in rats and monkeys, was detected in all species of hepatocytes. In addition, a TZD ring-opened S-cysteine conjugate (M15) was detected in human hepatocytes. From these results, the in vivo metabolic pathways in humans were predicted to be the four oxidation and one N-glucuronidation pathways. The four oxidative metabolites were formed by multiple human P450 enzymes, and N-glucuronide was formed by UGT1A3 and UGT2B7.