TY - JOUR T1 - Metabolic disposition of isoxicam in man, monkey, dog, and rat. JF - Drug Metabolism and Disposition JO - Drug Metab Dispos SP - 444 LP - 451 VL - 12 IS - 4 AU - P E Borondy AU - B M Michniewicz Y1 - 1984/07/01 UR - http://dmd.aspetjournals.org/content/12/4/444.abstract N2 - Isoxicam a new nonsteroidal antiinflammatory agent was radiolabeled with 14C at the 3-position of the benzothiazine nucleus. It was well absorbed following peroral administration to man, monkey, dog, and rat, reaching peak plasma concentrations in 4-8 hr. Over 90% of the plasma radioactivity was due to unchanged drug. Plasma elimination half-lives were 22-45 hr in man and 49-53 hr in dogs and 20-35 hr in rats and monkeys. Isoxicam was distributed to most tissues in rats, but the tissue-plasma ratio did not exceed unity, indicating a small volume of distribution. It was extensively metabolized with only a few per cent of the dose appearing as unchanged drug in the urine. The principal urinary metabolite in man was formed by hydroxylation of the methyl group on the isoxozole ring and accounted for 30-35% of an isoxicam dose. In the rat, oxoacetic acid, the major urinary metabolite, was formed by opening of the benzothiazine ring followed by hydrolytic cleavage of the C-3 to N-2 bond. In addition to the hydroxymethyl and oxoacetic acid, two unknown metabolites, accounting for only a small percentage of dose, were detected in the urine of all four species. Urinary excretion of 14C activity accounted for about 60% of a dose in man and rats, 31% in monkeys, and 17% in dogs. These results indicate that there is only a quantitative rather than a qualitative species difference in the metabolic disposition of isoxicam. ER -