TY - JOUR T1 - Metabolism of aminoglutethimide in humans. Identification of four new urinary metabolites. JF - Drug Metabolism and Disposition JO - Drug Metab Dispos SP - 511 LP - 516 VL - 12 IS - 4 AU - A B Foster AU - L J Griggs AU - I Howe AU - M Jarman AU - C S Leung AU - D Manson AU - M G Rowlands Y1 - 1984/07/01 UR - http://dmd.aspetjournals.org/content/12/4/511.abstract N2 - Four new metabolites of aminoglutethimide have been identified in the urine of patients being treated chronically with the drug. These were products of hydroxylation of the 3-ethylpiperidine-2,6-dione residue, namely 3-(4-aminophenyl)-3-ethyl-5-hydroxypiperidine-2,6-dione and its acetylamino analog, 3-(4-aminophenyl)-3-(1-hydroxyethyl)piperidine-2,6-dione, and 3-(4-aminophenyl)-3-(2-carboxamidoethyl)tetrahydrofuran-2-one, the lactone formed by rearrangement of 3-(4-aminophenyl)-3-(2-hydroxyethyl)piperidine-2,6-dione. The metabolites were isolated by reverse-phase thin layer chromatography and characterized by comparison of their mass spectra either with those of synthetic samples or with the mass spectra of analogous metabolites previously identified in the urine of rats. These new metabolites were minor constituents compared with aminoglutethimide and with the previously identified major metabolites 3-(4-acetylaminophenyl)-3-ethylpiperidine-2,6-dione and 3-(4-hydroxylaminophenyl)-3-ethylpiperidine-2,6-dione. There were marked species differences between rat and human inasmuch as almost all the metabolites in the urine of the rat were N-acetylated whereas most of the human metabolites were not. However, 5-hydroxylation of the piperidinedione residue was stereoselective in the same sense in both species, the cis isomer being formed exclusively. Synthetic cis-3-(4-aminophenyl)-3-ethyl-5-hydroxypiperidine-2,6-dione did not inhibit the activity of the target enzyme systems desmolase and aromatase in vitro, and therefore, like other metabolites so far described, is an inactivation product of the drug. ER -