PT - JOURNAL ARTICLE AU - E G Snyderwine AU - A Hunter TI - Metabolism and distribution of 14C- and 35S-labeled carbon disulfide in immature rats of different ages. DP - 1987 May 01 TA - Drug Metabolism and Disposition PG - 289--294 VI - 15 IP - 3 4099 - http://dmd.aspetjournals.org/content/15/3/289.short 4100 - http://dmd.aspetjournals.org/content/15/3/289.full SO - Drug Metab Dispos1987 May 01; 15 AB - The metabolism and distribution of 14C- and 35S-CS2 was examined in 1-, 5-, 10-, 20-, 30-, and 40-day-old rats. During a 3-hr period following an ip dose of 14C-CS2, 58-83% of the dose was expired as CS2 and 4-9% was metabolized to expired CO2 depending on age. Thirty- and forty-day-old rats metabolized significantly more CS2 to CO2 and expired significantly less CS2 than 1- through 20-day-old rats. At the end of the measured expiration period, only biotransformation products of CS2, which were in part covalently bound, remained in tissues from rats of all ages. Tissue levels of 35S-CS2-derived radioactivity exceeded levels of 14C-CS2-derived radioactivity indicating that sulfur metabolites free from the carbon atom of CS2 were formed in rats as young as 1 day of age. The 35S-CS2-derived radioactivity per g of tissue and thus 35S covalently bound to tissue protein was significantly higher in 1- through 20-day-old rats than in 30- and 40-day-old rats. Twenty-four hr after dosing, up to 13 times more 35S-labeled metabolites were covalently bound in organs from 1-day-old rats than in similar organs from 40-day-old rats. The results showed that elimination of the biotransformation products of CS2, in particular the covalently binding sulfur metabolites, was prolonged in newborn rats in comparison to 40-day-old rats.