TY - JOUR T1 - Role of pharmacokinetics and metabolism in the enhanced susceptibility of middle-aged male Sprague-Dawley rats to acetaminophen nephrotoxicity. JF - Drug Metabolism and Disposition JO - Drug Metab Dispos SP - 139 LP - 146 VL - 17 IS - 2 AU - J B Tarloff AU - R S Goldstein AU - B A Mico AU - J B Hook Y1 - 1989/03/01 UR - http://dmd.aspetjournals.org/content/17/2/139.abstract N2 - Middle-aged male Sprague-Dawley (SD) rats (9-12 months) are more susceptible to acetaminophen (APAP)-induced nephrotoxicity than are young (2-3 months) adult males. The present studies were designed to evaluate the role of pharmacokinetics and renal and hepatic metabolism of APAP in age-dependent nephrotoxicity. Following 750 mg/kg APAP, ip, a nephrotoxic dosage in 12-month-old but not 3-month-old rats, renal cortical APAP concentrations were significantly greater in 12-month-old compared with 3-month-old SD rats at 3, 4, and 6 hr after treatment. Renal medullary APAP concentrations in 12 month-old rats were significantly greater than in 3-month-old rats at 2, 3, and 5 hr after treatment. Serum APAP concentrations were significantly elevated in 12-month-old compared with 3-month-old rats from 2 through 5 hr after APAP (750 mg/kg ip). However, APAP tissue/serum concentration ratios were similar in 3- and 12-month-old rats, indicating that differences in tissue concentration were secondary to increased serum concentrations in older rats. Conjugated APAP metabolites in blood were similar in 3- and 12-month-olds during the initial 2-3 hr after 750 mg/kg APAP, ip, but began to accumulate in 12-month-old but not 3-month-old rats within 6-8 hr after APAP administration, perhaps secondary to declining renal function. After 500 mg/kg APAP, iv, blood APAP concentrations were markedly elevated in 12-month-old compared with 3-month-old rats during the entire course of the experiment.(ABSTRACT TRUNCATED AT 250 WORDS) ER -