RT Journal Article SR Electronic T1 Felbamate pharmacokinetics in the rat, rabbit, and dog. JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 1116 OP 1125 VO 19 IS 6 A1 V E Adusumalli A1 J T Yang A1 K K Wong A1 N Kucharczyk A1 R D Sofia YR 1991 UL http://dmd.aspetjournals.org/content/19/6/1116.abstract AB Rats, rabbits, and dogs were given single iv or single and multiple oral doses of felbamate ranging from 1.6-1000 mg/kg. Absorption of oral drug was complete in all species. The mean Cmax increased with dose from 13.9 to 185.9 micrograms/ml in rats, from 19.1 to 161.9 micrograms/ml in rabbits, and from 12.6 to 168.4 micrograms/ml in dogs. The tmax also increased with dose from 1-8 hr in rats, 8-24 hr in rabbits, and 3-7 hr in dogs. The plasma elimination half-life for the drug increased with dose from 2-16.7 hr in rats, 7.2-17.8 hr in rabbits, and 4.1-4.5 hr in dogs. A proportional increase in Cmax with dose was observed in all species up to 300-400 mg/kg doses. A biexponential equation fitted the drug plasma concentration vs. time data well. For multiple oral doses of 50 mg/kg or less, projected and observed steady-state concentrations agreed well. Animals dosed with [14C]felbamate eliminated most of the radioactivity in urine (58-87.7%), less in feces (7-23.7%), with considerable amounts in the bile. In rats, radioactivity was readily distributed into tissues and crossed the placenta and blood-brain barrier, but no accumulation in any tissue was observed. The volume of distribution was 131, 54, and 72% of body weight for rats, rabbits, and dogs, respectively. Binding of drug to rat, rabbit, and dog plasma proteins ranged from 22.4-35.9%. The overall plasma clearance of the drug for rats, rabbits, and dogs was 327, 52, and 108 ml.h-1.kg-1, respectively. Renal clearance of unchanged drug accounted for an estimated 20-35% and hepatic clearance due to metabolism for 65-80% of the overall clearance.