RT Journal Article SR Electronic T1 Absorption, metabolism, and excretion of risperidone in humans. JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 1134 OP 1141 VO 21 IS 6 A1 G Mannens A1 M L Huang A1 W Meuldermans A1 J Hendrickx A1 R Woestenborghs A1 J Heykants YR 1993 UL http://dmd.aspetjournals.org/content/21/6/1134.abstract AB The absorption, metabolism, and excretion of the novel antipsychotic risperidone was studied in three healthy male subjects. One week after a single oral dose of 1 mg [14C]risperidone, 70% of the administered radioactivity was recovered in the urine and 14% in the feces. Unchanged risperidone was mainly excreted in the urine and accounted for 30, 11, and 4% of the administered dose in the poor, intermediate, and extensive metabolizer of debrisoquine, respectively. Alicyclic hydroxylation at the 9-position of the tetrahydro-4H-pyrido[1,2-a]-pyrimidin-4-one moiety was the main metabolic pathway. The active metabolite 9-hydroxy-risperidone accounted for 8, 22, and 32% of the administered dose in the urine of the poor, intermediate, and extensive metabolizer, respectively. Oxidative N-dealkylation at the piperidine nitrogen, whether or not in combination with the 9-hydroxylation, accounted for 10-13% of the dose. In methanolic extracts of feces, risperidone, and benzisoxazole-opened risperidone and hydroxylated metabolites were detected. 9-Hydroxy-risperidone was by far the main plasma metabolite. The sum of risperidone and 9-hydroxy-risperidone accounted for the largest part of the plasma radioactivity in the three subjects. Although the debrisoquine-type genetic polymorphism plays a distinct role in the metabolism of risperidone, the pharmacokinetics of the active fraction (i.e. risperidone plus 9-hydroxy-risperidone) remained similar among the three subjects.