RT Journal Article SR Electronic T1 N4-hydroxylation of sulfamethoxazole by cytochrome P450 of the cytochrome P4502C subfamily and reduction of sulfamethoxazole hydroxylamine in human and rat hepatic microsomes. JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 406 OP 414 VO 23 IS 3 A1 A E Cribb A1 S P Spielberg A1 G P Griffin YR 1995 UL http://dmd.aspetjournals.org/content/23/3/406.abstract AB The N4-hydroxylation of sulfamethoxazole (SMX) to its hydroxylamine (SMX-HA) metabolite is the first step in the formation of reactive metabolites responsible for mediating hypersensitivity reactions associated with this compound. In rat hepatic microsomes, the NADPH-dependent oxidation of SMX to SMX-HA was increased 3-fold by pretreatment of rats with phenobarbital. Other cytochrome P450 (CYP) inducers were ineffective. The constitutive and induced SMX N-hydroxylation activities were inhibited by tolbutamide, and induction of SMX-HA activity paralleled the induction of progesterone 21-hydroxylase activity, a marker for CYP2C6. SMX N-hydroxylation in phenobarbital-treated rat hepatic microsomes was inhibited 70% by anti-CYP2C6 antisera. Thus, the N4-hydroxylation of SMX by rat hepatic microsomes was mediated by members of the CYP2C subfamily, probably CYP2C6. In a panel of human microsomes, SMX-HA formation correlated with tolbutamide hydroxylase activity (r = 0.75; p = 0.01); CYP2C9 content (r = 0.79; p < 0.01) and was inhibited 70% by 500 microM tolbutamide and 90% by 100 microM sulfaphenazole. Recombinant CYP2C9 catalyzed the N-hydroxylation of SMX. SMX-HA formation in human hepatic microsomes was therefore mediated predominantly by CYP2C9. CYP-mediated reduction of SMX-HA to SMX was markedly induced in dexamethasone and phenobarbital-treated rat hepatic microsomes, and was attributed to CYP3A and CYP2B forms. In uninduced rat and human hepatic microsomes, SMX-HA reduction was mediated predominantly by an NADH-dependent microsomal hydroxylamine reductase under aerobic conditions. Under anaerobic conditions, troleandomycin at > or = 1 microM inhibited the reduction of SMX-HA in human hepatic microsomes by 45%, whereas sulfaphenazole had no effect.(ABSTRACT TRUNCATED AT 250 WORDS)