RT Journal Article SR Electronic T1 Oxidation at C-1 controls the cytotoxicity of 1,1-dichloro-2,2- bis(p-chlorophenyl)ethane by rabbit and human lung cells. JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 595 OP 599 VO 23 IS 5 A1 W K Nichols A1 C M Terry A1 N S Cutler A1 M L Appleton A1 P K Jesthi A1 G S Yost YR 1995 UL http://dmd.aspetjournals.org/content/23/5/595.abstract AB Isolated rabbit Clara cells and a transformed human bronchial epithelial cell line, BEAS-2B, were used to investigate the mechanism of cytotoxicity of 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD), a persistent insecticide and stable metabolite of 1,1,1-trichloro-2,2- bis(p-chlorophenyl)ethane. Both BEAS-2B cells and rabbit Clara cells were highly susceptible to DDD toxicity and were partially protected by 1-aminobenzotriazole, a suicide substrate inhibitor of cytochrome P450 enzymes. DDD (0.05 mM) killed 47 +/- 1.8% of rabbit Clara cells and 42 +/- 7.9% of BEAS-2B cells after 3 hr and 84 +/- 3.0% of rabbit Clara cells and 80 +/- 14% of BEAS-2B cells after 6 hr. Consequently, DDD is the most potent Clara cell toxicant recognized to date. The cytotoxicity of DDD to these cells was decreased by deuterium substitution at the C-1 position. Rabbit Clara cells and pulmonary microsomes incubated with 14C-DDD produced the fully oxidized acetic acid metabolite 2,2'-bis(p- chlorophenyl)acetic acid (DDA), but DDA was not formed by Clara cells when DDD was coincubated with 1-aminobenzotriazole. These results support the hypothesis that the cytotoxicity of DDD to susceptible subpopulations of rabbit and human lung cells is, at least in part, caused by cytochrome P450-mediated oxidation of DDD at C-1. A required step for the production of the cytotoxic intermediate is proposed to be the formation of a highly reactive acyl halide intermediate that is readily hydrolyzed to a stable, nontoxic metabolite, DDA.