RT Journal Article SR Electronic T1 Flavonoids, potent inhibitors of the human P-form phenolsulfotransferase. Potential role in drug metabolism and chemoprevention. JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 232 OP 237 VO 24 IS 2 A1 Eaton, E A A1 Walle, U K A1 Lewis, A J A1 Hudson, T A1 Wilson, A A A1 Walle, T YR 1996 UL http://dmd.aspetjournals.org/content/24/2/232.abstract AB The common dietary constituent quercetin was a potent inhibitor of sulfoconjugation of acetaminophen and minoxidil by human liver cytosol, partially purified P-form phenolsulfotransferase (PST), and recombinant P-form PST, with IC50 values of 0.025-0.095 microM. Quercetin inhibition of acetaminophen was noncompetitive with respect to acceptor substrate, with a Ki value of 0.067 microM. A number of other flavonoids, such as fisetin, galangin, myricetin, kaempferol, chrysin, and apigenin, were also potent inhibitors of P-form PST-mediated sulfation, with IC50 values < 1 microM. Studies of structural analogs indicated the flavonoid 7-hydroxyl group as particularly important for potent inhibition. Potential human metabolites of quercetin were poor inhibitors. Curcumin, genistein, and ellagic acid (other polyphenolic natural products) were also inhibitors of P-form PST, with IC50 values of 0.38-34.8 microM. Quercetin was also shown to inhibit sulfoconjugation by the human hepatoma cell line Hep G2. Although less potent in this intact cell system (IC50 2-5 microM), quercetin was still more potent than 2,6-dichloro-4-nitrophenol, the classical P-form PST inhibitor that has been shown to be an inhibitor also in vivo. These observations suggest the potential for clinically important drug interactions, as well as a possible role for flavonoids as chemopreventive agents in sulfation-induced carcinogenesis.