RT Journal Article SR Electronic T1 Identification of the Human Liver Cytochrome P450 Isoenzyme Responsible for the 6-Methylhydroxylation of the Novel Anticancer Drug 5,6-Dimethylxanthenone-4-acetic Acid JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 1449 OP 1456 VO 28 IS 12 A1 Shufeng Zhou A1 James W. Paxton A1 Malcolm D. Tingle A1 Philip Kestell YR 2000 UL http://dmd.aspetjournals.org/content/28/12/1449.abstract AB In vitro studies were conducted to identify the hepatic cytochrome P450 (CYP) isoenzyme involved in the 6-methylhydroxylation of 5,6-dimethylxanthenone-4-acetic acid (DMXAA) by using a human liver library (n = 14). The metabolite 6-hydroxymethyl-5-methylxanthenone-4-acetic acid (6-OH-MXAA) was determined by HPLC with fluorescence detection. The metabolite formed in human liver microsomes and by cDNA-expressed CYP isoform was identified by liquid chromatography mass spectrometry as 6-OH-MXAA. In human liver microsomes (n = 14), 6-methylhydroxylation of DMXAA followed monophasic Michaelis-Menten kinetics, with a mean apparent Km of 21 ± 5 μM and Vmax of 0.043 ± 0.019 nmol/min/mg. An approximate 10-fold interindividual variation in the intrinsic clearance (Vmax/Km) of DMXAA 6-methylhydroxylation in human liver microsomes was observed. The involvement of CYP1A2 in DMXAA metabolism by human livers was demonstrated by the following: 1) the potent inhibition of DMXAA metabolism by furafylline (kinact = 0.23 ± 0.04 min−1, K′app= 15.6 ± 6.7 μM) and α-naphthoflavone (Ki = 0.036 μM), but not by cimetidine, ketoconazole, tolbutamide, quinidine, chlorzoxazone, diethyldithiocarbamate, troleandomycin, and sulfaphenazole; 2) when incubated with human lymphoblastoid cell microsomes containing cDNA-expressed CYP isoenzymes, DMXAA was metabolized only by CYP1A2, with an apparent Km of 6.2 ± 1.5 μM and Vmax of 0.014 ± 0.001 nmol/min/mg, but not by CYP2A6, CYP2B6, CYP2C9 (Arg144), CYP2C19, CYP2D6 (Val374), CYP2E1, and CYP3A4; 3) a significant correlation (r = 0.90; P < .001) between 6-methylhydroxylation of DMXAA and 7-ethoxyresorufinO-deethylation; and 4) a significant correlation (r = 0.75; P < .01) between the CYP1A protein level determined by Western blots and DMXAA 6-methylhydroxylation. The American Society for Pharmacology and Experimental Therapeutics