TY - JOUR T1 - Elucidation of the Effects of the CYP1A2 Deficiency Polymorphism in the Metabolism of 4-Cyclohexyl-1-ethyl-7-methylpyrido[2,3-d]pyrimidine-2-(1<em>H</em>)-one (YM-64227), a Phosphodiesterase Type 4 Inhibitor, and Its Metabolites in Dogs JF - Drug Metabolism and Disposition JO - Drug Metab Dispos SP - 1811 LP - 1816 DO - 10.1124/dmd.106.011213 VL - 34 IS - 11 AU - Daisuke Tenmizu AU - Kiyoshi Noguchi AU - Hidetaka Kamimura Y1 - 2006/11/01 UR - http://dmd.aspetjournals.org/content/34/11/1811.abstract N2 - The canine CYP1A2 1117 C&gt;T single nucleotide polymorphism is responsible for a substantial portion of the interindividual variability seen in the pharmacokinetics of 4-cyclohexyl-1-ethyl-7-methylpyrido[2,3-d]pyrimidine-2-(1H)-one (YM-64227). The purpose of this study is to investigate the contribution of CYP1A2 to the metabolism of YM-64227 and its five metabolites (MM-1 to MM-5), as well as to determine the interindividual variability between the pharmacokinetic profiles of the compounds with respect to the CYP1A2 deficiency polymorphism. α-Naphthoflavone and anti-CYP1A1/2 antibody inhibited the metabolic activities at which MM-2 and MM-3 were formed from YM-64227 in C/C- and C/T-type microsomes. In T/T type, the rate of MM-2 and MM-3 formation was lower, and α-naphthoflavone and anti-CYP1A1/2 antibody were shown to have no effect. A positive correlation between the overall metabolism of YM-64227 and phenacetin O-deethylation, a CYP1A2 activity marker, was observed in all the genotypes. The in vitro metabolic clearances in the T/T type of MM-1, MM-3, MM-4, and MM-5 were less than 50% lower than those in the C/C type. The anti-CYP1A1/2 antibody inhibited the metabolism of MM-1, MM-3, MM-4, and MM-5 in the C/C and C/T types. These results suggest that the formation of MM-2 and MM-3 from YM-64227 is catalyzed by CYP1A2, and that CYP1A2 contributes mainly to the subsequent metabolism of the primary metabolites of YM-64227, with the exception of MM-2. It is possible that the interindividual variability of YM-64227 with respect to the CYP1A2 deficiency polymorphism is caused by a decrease in the metabolic activities of both the unchanged drug and its metabolites. The American Society for Pharmacology and Experimental Therapeutics ER -