TY - JOUR T1 - Valproic Acid Induces CYP3A4 and MDR1 Gene Expression by Activation of Constitutive Androstane Receptor and Pregnane X Receptor Pathways JF - Drug Metabolism and Disposition JO - Drug Metab Dispos SP - 1032 LP - 1041 DO - 10.1124/dmd.106.014456 VL - 35 IS - 7 AU - Lukas Cerveny AU - Lucie Svecova AU - Eva Anzenbacherova AU - Radim Vrzal AU - Frantisek Staud AU - Zdenek Dvorak AU - Jitka Ulrichova AU - Pavel Anzenbacher AU - Petr Pavek Y1 - 2007/07/01 UR - http://dmd.aspetjournals.org/content/35/7/1032.abstract N2 - In our study, we tested the hypothesis whether valproic acid (VPA) in therapeutic concentrations has potential to affect expression of CYP3A4 and MDR1 via constitutive androstane receptor (CAR) and pregnane X receptor (PXR) pathways. Interaction of VPA with CAR and PXR nuclear receptors was studied using luciferase reporter assays, real-time reverse transcriptase polymerase chain reaction (RT-PCR), electrophoretic mobility shift assay (EMSA), and analysis of CYP3A4 catalytic activity. Using transient transfection reporter assays in HepG2 cells, VPA was recognized to activate CYP3A4 promoter via CAR and PXR pathways. By contrast, a significant effect of VPA on MDR1 promoter activation was observed only in CAR-cotransfected HepG2 cells. These data well correlated with up-regulation of CYP3A4 and MDR1 mRNAs analyzed by real-time RT-PCR in cells transfected with expression vectors encoding CAR or PXR and treated with VPA. In addition, VPA significantly up-regulated CYP3A4 mRNA in primary hepatocytes and augmented the effect of rifampicin. EMSA experiments showed VPA-mediated augmentation of CAR/retinoid X receptor α heterodimer binding to direct repeat 3 (DR3) and DR4 responsive elements of CYP3A4 and MDR1 genes, respectively. Finally, analysis of specific CYP3A4 catalytic activity revealed its significant increase in VPA-treated LS174T cells transfected with PXR. In conclusion, we provide novel insight into the mechanism by which VPA affects gene expression of CYP3A4 and MDR1 genes. Our results demonstrate that VPA has potential to up-regulate CYP3A4 and MDR1 through direct activation of CAR and/or PXR pathways. Furthermore, we suggest that VPA synergistically augments the effect of rifampicin in transactivation of CYP3A4 in primary human hepatocytes. The American Society for Pharmacology and Experimental Therapeutics ER -