TY - JOUR T1 - Structural Modulation of Oxidative Metabolism in Design of Improved Benzothiophene Selective Estrogen Receptor Modulators JF - Drug Metabolism and Disposition JO - Drug Metab Dispos SP - 161 LP - 169 DO - 10.1124/dmd.108.023408 VL - 37 IS - 1 AU - Zhihui Qin AU - Irida Kastrati AU - Rezene T. Ashgodom AU - Daniel D. Lantvit AU - Cassia R. Overk AU - Yongsoo Choi AU - Richard B. van Breemen AU - Judy L. Bolton AU - Gregory R. J. Thatcher Y1 - 2009/01/01 UR - http://dmd.aspetjournals.org/content/37/1/161.abstract N2 - Raloxifene and arzoxifene are benzothiophene selective estrogen receptor modulators (SERMs) of clinical use in postmenopausal osteoporosis and treatment of breast cancer and potentially in hormone replacement therapy. The benefits of arzoxifene are attributed to improved bioavailability over raloxifene, whereas the arzoxifene metabolite, desmethylarzoxifene (DMA) is a more potent antiestrogen. As polyaromatic phenolics, benzothiophene SERMs undergo oxidative metabolism to electrophilic quinoids. The long-term clinical use of SERMs demands increased understanding of correlations between structure and toxicity, with metabolism being a key component. A homologous series of 4′-substituted 4′-desmethoxyarzoxifene derivatives was developed, and metabolism was studied in liver and intestinal microsomes. Formation of glutathione conjugates was assayed in rat liver microsomes and novel adducts were characterized by liquid chromatography-tandem mass spectrometry. Formation of glucuronide conjugates was assayed in human intestine and liver microsomes, demonstrating formation of glucuronides ranging from 5 to 100% for the benzothiophene SERMs: this trend was inversely correlated with the loss of parent SERM in rat liver microsomal incubations. Molecular orbital calculations generated thermodynamic parameters for oxidation that correlated with Hammett substituent constants; however, metabolism in liver microsomes correlated with a combination of both Hammett and Hansch lipophilicity parameters. The results demonstrate a rich oxidative chemistry for the benzothiophene SERMs, the amplitude of which can be powerfully modulated, in a predictable manner, by structural tuning of the 4′-substituent. The predicted extensive metabolism of DMA was confirmed in vivo and compared with the relatively stable arzoxifene and F-DMA. The American Society for Pharmacology and Experimental Therapeutics ER -