RT Journal Article SR Electronic T1 The Mibefradil Derivative NNC55-0396, a Specific T-Type Calcium Channel Antagonist, Exhibits Less CYP3A4 Inhibition than Mibefradil JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 1291 OP 1299 DO 10.1124/dmd.107.020115 VO 36 IS 7 A1 Peter H. Bui A1 Arnulfo Quesada A1 Adrian Handforth A1 Oliver Hankinson YR 2008 UL http://dmd.aspetjournals.org/content/36/7/1291.abstract AB A novel mibefradil derivative, NNC55-0396, designed to be hydrolysis-resistant, was shown to be a selective T-type Ca2+ channel inhibitor without L-type Ca2+ channel efficacy. However, its effects on cytochromes P450 (P450s) have not previously been examined. We investigated the inhibitory effects of NNC55-0396 toward seven major recombinant human P450s—CYP3A4, CYP2D6, CYP1A2, CYP2C9, CYP2C8, CYPC19, and CYP2E1—and compared its effects with those of mibefradil and its hydrolyzed metabolite, Ro40-5966. Our results show that CYP3A4 and CYP2D6 are the two P450s most affected by mibefradil, Ro40-5966, and NNC55-0396. Mibefradil (IC50 = 33 ± 3 nM, Ki = 23 ± 0.5 nM) and Ro40-5966 (IC50 = 30 ± 7.8 nM, Ki = 21 ± 2.8 nM) have a 9- to 10-fold greater inhibitory activity toward recombinant CYP3A4 benzyloxy-4-trifluoromethylcoumarin-O-debenzylation activity than NNC55-0396 (IC50 = 300 ± 30 nM, Ki = 210 ± 6 nM). More dramatically, mibefradil (IC50 = 566 ± 71 nM, Ki = 202 ± 39 nM) shows 19-fold higher inhibition of CYP3A-associated testosterone 6β-hydroxylase activity in human liver microsomes compared with NNC55-0396 (IC50 = 11 ± 1.1 μM, Ki = 3.9 ± 0.4 μM). Loss of testosterone 6β-hydroxylase activity by recombinant CYP3A4 was shown to be time- and concentration-dependent with both compounds. However, NNC55-0396 (KI = 3.87 μM, Kinact = 0.061/min) is a much less potent mechanism-based inhibitor than mibefradil (KI = 83 nM, Kinact = 0.048/min). In contrast, NNC55-0396 (IC50 = 29 ± 1.2 nM, Ki = 2.8 ± 0.3 nM) and Ro40-5966 (IC50 = 46 ± 11 nM, Ki = 4.5 ± 0.02 nM) have a 3- to 4-fold greater inhibitory activity toward recombinant CYP2D6 than mibefradil (IC50 = 129 ± 21 nM, Ki = 12.7 ± 0.9 nM). Our results suggest that NNC55–0396 could be a more favorable T-type Ca2+ antagonist than its parent compound, mibefradil, which was withdrawn from the market because of strong inhibition of CYP3A4. The American Society for Pharmacology and Experimental Therapeutics