RT Journal Article SR Electronic T1 Dehydrogenation of the Indoline-Containing Drug 4-Chloro-N-(2-methyl-1-indolinyl)-3-sulfamoylbenzamide (Indapamide) by CYP3A4: Correlation with in Silico Predictions JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 672 OP 684 DO 10.1124/dmd.108.022707 VO 37 IS 3 A1 Hao Sun A1 Chad Moore A1 Patrick M. Dansette A1 Santosh Kumar A1 James R. Halpert A1 Garold S. Yost YR 2009 UL http://dmd.aspetjournals.org/content/37/3/672.abstract AB 4-Chloro-N-(2-methyl-1-indolinyl)-3-sulfamoylbenzamide (indapamide), an indoline-containing diuretic drug, has recently been evaluated in a large Phase III clinical trial (ADVANCE) with a fixed-dose combination of an angiotensin-converting enzyme inhibitor, perindopril, and shown to significantly reduce the risks of major vascular toxicities in people with type 2 diabetes. The original metabolic studies of indapamide reported that the indoline functional group was aromatized to indole through a dehydrogenation pathway by cytochromes P450. However, the enzymatic efficiency of indapamide dehydrogenation was not elucidated. A consequence of indoline aromatization is that the product indoles might have dramatically different therapeutic potencies. Thus, studies that characterize dehydrogenation of the functional indoline of indapamide were needed. Here we identified several indapamide metabolic pathways in vitro with human liver microsomes and recombinant CYP3A4 that include the dehydrogenation of indapamide to its corresponding indole form, and also hydroxylation and epoxidation metabolites, as characterized by liquid chromatography/mass spectrometry. Indapamide dehydrogenation efficiency (Vmax/Km = 204 min/mM) by CYP3A4 was approximately 10-fold greater than that of indoline dehydrogenation. In silico molecular docking of indapamide into two CYP3A4 crystal structures, to evaluate the active site parameters that control dehydrogenation, produced conflicting results about the interactions of Arg212 with indapamide in the active site. These conflicting theories were addressed by functional studies with a CYP3A4R212A mutant enzyme, which showed that Arg212 does not seem to facilitate positioning of indapamide for dehydrogenation. However, the metabolites of indapamide were precisely consistent with in silico predictions of binding orientations using three diverse computer methods to predict drug metabolism pathways. The American Society for Pharmacology and Experimental Therapeutics