RT Journal Article SR Electronic T1 Role of P-Glycoprotein in the Disposition of Macrocyclic Lactones: A Comparison between Ivermectin, Eprinomectin, and Moxidectin in Mice JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 573 OP 580 DO 10.1124/dmd.109.030700 VO 38 IS 4 A1 Solange Kiki-Mvouaka A1 Cécile Ménez A1 Christiane Borin A1 Faouri Lyazrhi A1 Magali Foucaud-Vignault A1 Jacques Dupuy A1 Xavier Collet A1 Michel Alvinerie A1 Anne Lespine YR 2010 UL http://dmd.aspetjournals.org/content/38/4/573.abstract AB Macrocyclic lactones (MLs) are lipophilic anthelmintics and substrates for P-glycoprotein (P-gp), an ATP-binding cassette transporter involved in drug efflux out of both host and parasites. To evaluate the contribution of P-gp to the in vivo kinetic disposition of MLs, the plasma kinetics, brain concentration, and intestinal excretion of three structurally different MLs (ivermectin, eprinomectin, and moxidectin) were compared in wild-type and P-gp-deficient [mdr1ab(−/−)] mice. Each drug (0.2 mg/kg) was administered orally, intravenously, or subcutaneously to the mice. Plasma, brain, and intestinal tissue concentrations were measured by high-performance liquid chromatography. The intestinal excretion rate after intravenous administration was determined at different levels of the small intestine by using an in situ intestinal perfusion model. P-gp deficiency led to a significant increase in the area under the plasma concentration-time curve (AUC) of ivermectin (1.5-fold) and eprinomectin (3.3-fold), whereas the moxidectin AUC was unchanged. Ivermectin and to a greater extent eprinomectin were both excreted by the intestine via a P-gp-dependent pathway, whereas moxidectin excretion was weaker and mostly P-gp-independent. The three drugs accumulated in the brains of the mdr1ab(−/−) mice, but eprinomectin concentrations were significantly lower. We concluded that eprinomectin disposition in mice is controlled mainly by P-gp efflux, more so than that of ivermectin, whereas moxidectin disposition appears to be mostly P-gp-independent. Given that eprinomectin and ivermectin have higher affinity for P-gp than moxidectin, these findings demonstrated that the relative affinity of MLs for P-gp could be predictive of the in vivo kinetic behavior of these drugs. Copyright © 2010 by The American Society for Pharmacology and Experimental Therapeutics