TY - JOUR T1 - Farnesoid X Receptor Activation by Chenodeoxycholic Acid Induces Detoxifying Enzymes through AMP-Activated Protein Kinase and Extracellular Signal-Regulated Kinase 1/2-Mediated Phosphorylation of CCAAT/Enhancer Binding Protein β JF - Drug Metabolism and Disposition JO - Drug Metab Dispos SP - 1451 LP - 1459 DO - 10.1124/dmd.111.038414 VL - 39 IS - 8 AU - Kyoung Noh AU - Young Mi Kim AU - Young Woo Kim AU - Sang Geon Kim Y1 - 2011/08/01 UR - http://dmd.aspetjournals.org/content/39/8/1451.abstract N2 - Farnesoid X receptor (FXR) regulates redox homeostasis and elicits a cytoprotective effect. CCAAT/enhancer binding protein-β (C/EBPβ) plays a role in regulating the expression of hepatocyte-specific genes and contributes to hepatocyte protection and liver regeneration. In view of the role of FXR in xenobiotic metabolism and hepatocyte survival, this study investigated the potential of FXR to activate C/EBPβ for the induction of detoxifying enzymes and the responsible regulatory pathway. Chenodeoxycholic acid (CDCA), a major component in bile acids, activates FXR. In HepG2 cells, CDCA treatment activated C/EBPβ, as shown by increases in its phosphorylation, nuclear accumulation, and expression. 3-(2,6-Dichlorophenyl)-4-(3′-carboxy-2-chlorostilben-4-yl-)oxymethyl-5-isopropyl-isoxazole (GW4064), a synthetic FXR ligand, had similar effects. In addition, CDCA enhanced luciferase gene transcription from the construct containing −1.65-kb GSTA2 promoter, which contained C/EBP response element (pGL-1651). Moreover, CDCA treatment activated AMP-activated protein kinase (AMPK), which led to extracellular signal-regulated kinase 1/2 (ERK1/2) activation, as evidenced by the results of experiments using a dominant-negative mutant of AMPKα and chemical inhibitor. The activation of ERK1/2 was responsible for the activating phosphorylation of C/EBPβ. FXR knockdown attenuated the ability of CDCA to activate AMPK and ERK1/2 and phosphorylate C/EBPβ. Consistently, enforced expression of FXR promoted the phosphorylation of AMPKα, ERK1/2, and C/EBPβ, verifying that C/EBPβ phosphorylation elicited by CDCA results from the activation of AMPK and ERK1/2 by FXR. In mice, CDCA treatment activated C/EBPβ with the induction of detoxifying enzymes in the liver. Our results demonstrate that CDCA induces antioxidant and xenobiotic-metabolizing enzymes by activating C/EBPβ through AMPK-dependent ERK1/2 pathway downstream of FXR. ER -