RT Journal Article SR Electronic T1 Identification of the ortho-Benzoquinone Intermediate of 5-O-Caffeoylquinic Acid In Vitro and In Vivo: Comparison of Bioactivation under Normal and Pathological Situations JF Drug Metabolism and Disposition JO Drug Metab Dispos FD American Society for Pharmacology and Experimental Therapeutics SP 1628 OP 1640 DO 10.1124/dmd.112.045641 VO 40 IS 8 A1 Cen Xie A1 Dafang Zhong A1 Xiaoyan Chen YR 2012 UL http://dmd.aspetjournals.org/content/40/8/1628.abstract AB 5-O-Caffeoylquinic acid (5-CQA) is one of the major bioactive ingredients in some Chinese herbal injections. Occasional anaphylaxis has been reported for these injections during their clinical use, possibly caused by reactive metabolites of 5-CQA. This study aimed at characterizing the bioactivation pathway(s) of 5-CQA and the metabolic enzyme(s) involved. After incubating 5-CQA with GSH and NADPH-supplemented human liver microsomes, two types of GSH conjugates were characterized: one was M1-1 from the 1,4-addition of GSH to ortho-benzoquinone intermediate; the other was M2-1 and M2-2 from the 1,4-addition of GSH directly to the α,β-unsaturated carbonyl group of the parent. The formation of M1-1 was cytochrome P450 (P450)-mediated, with 3A4 and 2E1 as the principal catalyzing enzymes, whereas the formation of M2-1 and M2-2 was independent of NADPH and could be accelerated by cytosolic glutathione transferase. In the presence of cumene hydroperoxide, M1-1 formation increased 6-fold, indicating that 5-CQA can also be bioactivated by P450 peroxidase under oxidizing conditions. Furthermore, M1-1 could be formed by myeloperoxidase in activated human leukocytes, implying that 5-CQA bioactivation is more likely to occur under inflammatory conditions. This finding was supported by experiments on lipopolysaccharide-induced inflammatory rats, where a greater amount of M1-1 was detected. In S-adenosyl methionine- and GSH-supplemented human S9 incubations, M1-1 formation decreased by 80% but increased after tolcapone-inhibited catechol-O-methyltransferase (COMT) activity. In summary, the high reactivities of the ortho-benzoquinone metabolite and α,β-unsaturated carbonyl group of 5-CQA to nucleophiles have been demonstrated. Different pathological situations and COMT activities in patients may alter the bioactivation extent of 5-CQA.