%0 Journal Article %A Feifeng Song %A Yongjun Hu %A Huidi Jiang %A David E. Smith %T Species Differences in Human and Rodent PEPT2-Mediated Transport of Glycylsarcosine and Cefadroxil in Pichia Pastoris Transformants %D 2017 %R 10.1124/dmd.116.073320 %J Drug Metabolism and Disposition %P 130-136 %V 45 %N 2 %X The proton-coupled oligopeptide transporter PEPT2 (SLC15A2) plays an important role in the disposition of di/tripeptides and peptide-like drugs in kidney and brain. However, unlike PEPT1 (SLC15A1), there is little information about species differences in the transport of PEPT2-mediated substrates. The purpose of this study was to determine whether PEPT2 exhibited a species-dependent uptake of glycylsarcosine (GlySar) and cefadroxil using yeast Pichia pastoris cells expressing cDNA from human, mouse, and rat. In such a system, the functional activity of PEPT2 was evaluated with [3H]GlySar as a function of time, pH, substrate concentration, and specificity, and with [3H]cefadroxil as a function of concentration. We observed that the uptake of GlySar was pH-dependent with an optimal uptake at pH 6.5 for all three species. Moreover, GlySar showed saturable uptake kinetics, with Km values in human (150.6 µM) > mouse (42.8 µM) ≈ rat (36.0 µM). The PEPT2-mediated uptake of GlySar in yeast transformants was specific, being inhibited by di/tripeptides and peptide-like drugs, but not by amino acids and nonsubstrate compounds. Cefadroxil also showed a saturable uptake profile in all three species, with Km values in human (150.8 μM) > mouse (15.6 μM) ≈ rat (11.9 μM). These findings demonstrated that the PEPT2-mediated uptake of GlySar and cefadroxil was specific, species dependent, and saturable. Furthermore, based on the Km values, mice appeared similar to rats but both were less than optimal as animal models in evaluating the renal reabsorption and pharmacokinetics of peptides and peptide-like drugs in humans. %U https://dmd.aspetjournals.org/content/dmd/45/2/130.full.pdf