TY - JOUR T1 - Application of Static Modeling ­­in the Prediction of In Vivo Drug–Drug Interactions between Rivaroxaban and Antiarrhythmic Agents Based on In Vitro Inhibition Studies JF - Drug Metabolism and Disposition JO - Drug Metab Dispos SP - 260 LP - 268 DO - 10.1124/dmd.116.073890 VL - 45 IS - 3 AU - Eleanor Jing Yi Cheong AU - Janice Jia Ni Goh AU - Yanjun Hong AU - Gopalakrishnan Venkatesan AU - Yuanjie Liu AU - Gigi Ngar Chee Chiu AU - Pipin Kojodjojo AU - Eric Chun Yong Chan Y1 - 2017/03/01 UR - http://dmd.aspetjournals.org/content/45/3/260.abstract N2 - Rivaroxaban, a direct Factor Xa inhibitor, is indicated for stroke prevention in nonvalvular atrial fibrillation (AF). Studies have revealed that the clearance of rivaroxaban is largely attributed to CYP3A4, CYP2J2 metabolism, and P-glycoprotein (P-gp) efflux pathways. Amiodarone and dronedarone are antiarrhythmic agents employed in AF management. Amiodarone, dronedarone, and their major metabolites, N-desethylamiodarone (NDEA) and N-desbutyldronedarone (NDBD), demonstrate inhibitory effects on CYP3A4 and CYP2J2 with U.S. Food and Drug Administration–recommended probe substrates. In addition, both amiodarone and dronedarone are known P-gp inhibitors. Hence, the concomitant administration of these antiarrhythmic agents has the potential to augment the systemic exposure of rivaroxaban through simultaneous impairment of its clearance pathways. Currently, however, clinical data on the extent of these postulated drug–drug interactions are lacking. In this study, in vitro inhibition assays using rivaroxaban as the probe substrate demonstrated that both dronedarone and NDBD produced reversible inhibition as well as irreversible mechanism-based inactivation of CYP3A4- and CYP2J2-mediated metabolism of rivaroxaban. However, amiodarone and NDEA were observed to cause reversible inhibition as well as mechanism-based inactivation of CYP3A4 but not CYP2J2. In addition, amiodarone, NDEA, and dronedarone, but not NDBD, were determined to inhibit P-gp–mediated rivaroxaban transport. The in vitro inhibition parameters were fitted into a mechanistic static model, which predicted a 37% and 31% increase in rivaroxaban exposure due to the inhibition of hepatic and gut metabolism by amiodarone and dronedarone, respectively. A separate model quantifying the inhibition of P-gp–mediated efflux by amiodarone or dronedarone projected a 9% increase in rivaroxaban exposure. ER -