IDENTIFICATION OF INTESTINAL UDP-GLUCURONOSYLTRANSFERASE INHIBITORS IN GREEN TEA (CAMELLIA SINENSIS) USING A BIOCHEMOMETRIC APPROACH: APPLICATION TO RALOXIFENE AS A TEST DRUG VIA IN VITRO TO IN VIVO EXTRAPOLATION Dan-Dan Tian, Joshua J. Kellogg, Neşe Okut, Nicholas H. Oberlies, Nadja B. Cech, Danny D. Shen, Jeannine S. McCune, and Mary F. Paine DRUG METABOLISM AND DISPOSITION ## SUPPLEMENTARY INFORMATION **Fig. S1.** Concentration-dependent inhibition of intestinal microsomal UGT activity (4-MU glucuronidation) by purified catechins. Methanol (2%, v/v) served as vehicle control. Nicardipine (400 μM) and silybin B (100 μM) served as positive control UGT inhibitors (Gufford, 2014). All catechins were tested at 100 μM. Bars and error bars denote mean \pm SD, respectively, of triplicate incubations. **Fig. S2.** Dixon plots showing inhibition of raloxifene-4'-glucuronide (R4G; left) or raloxifene-6-glucuronide (R6G; right) formation by ECG (upper) and EGCG (lower). Symbols denote individual data points of duplicate incubations. **Fig. S3.** Concentration-dependent inhibition of intestinal microsomal UGT activity (raloxifene glucuronidation) by purified catechins. Methanol (2%, v/v) served as vehicle control. Nicardipine (400 μM) and silybin B (100 μM) served as positive control UGT inhibitors (Gufford et al., 2014). All catechins were tested at 10 and 100 μM. Bars and error bars denote mean \pm SD, respectively, of triplicate incubations. R4G, raloxifene 4'-glucuronide; R6G, raloxifene 6-glucuronide. ## **Supplementary Reference** Gufford BT, Chen G, Lazarus P, Graf TN, Oberlies NH and Paine MF (2014) Identification of dietderived constituents as potent inhibitors of intestinal glucuronidation. Drug Metab Dispos 42:1675-1683 Fig. S1 Fig. S2 Fig. S3