Supplemental Materials

Induction of Human Intestinal and Hepatic Organic Anion Transporting Polypeptides; Where is the Evidence for its Relevance in Drug-Drug Interactions?

A. David Rodrigues, Yurong Lai, Hong Shen, Manthena V.S. Varma, Andrew Rowland, and Stefan Oswald

ADME Sciences, Medicine Design, Worldwide Research & Development, Pfizer Inc.,

Groton CT USA (A.D.R., M.V.S.V.), College of Medicine and Public Health, Flinders

University, Adelaide, SA, Australia (A.R.), Drug Metabolism Department, Gilead Sciences,

Inc., Foster City, California, USA (Y.L.), Department of Metabolism and Pharmacokinetics,

Bristol-Myers Squibb Research and Development, Princeton, New Jersey, USA (H.S.), and

Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University

Medicine of Greifswald, Felix-Hausdorff-Straße. 3, 17487 Greifswald, Germany (S.O.)

- Table S1.Drug interaction between itraconazole with pravastatin compared to
coproporphyrin isomers and digoxin.
- Table S2.Clinical assessment of rifampicin as inhibitor of CYP3A and Pgp; digoxin and
dabigatran etexilate as Pgp probes; and midazolam as CYP3A probe.
- Table S3.Rifampicin and its metabolites as solute carrier, Pgp and MRP2 substrates in
vitro (Pfizer, unpublished data).
- Table S4.Impact of various known CYP3A inducers on the PK of Pgp probe drugs
digoxin and dabigatran

 Table S1

 Drug interaction between itraconazole with pravastatin compared to coproporphyrin isomers and digoxin

PO Itraconazole dose		Probe		% Increase in	Reference
Dose (mg)	Duration	Dose (mg)Timing of dose after itraconazole last dose ^a		probe AUC	Kelefence
200	5 days	PO Pravastatin (40)	4 hr	49	Mazzu et al., 2000
200	4 days	PO Pravastatin (40)	2 hr	72	Neuvonen et al., 1998
200	30 days	PO Pravastatin (40)	Co-dose	12	Jacobson, 1997
200	8 days	Coproporphyrin I	N/A	6	Shen et al., 2018
		Coproporphyrin III	N/A	9	
200	5 days	PO Digoxin (0.5)	1 hr	68	Jalava et al., 1997

N/A: not applicable

^aPlasma T_{max} of itraconazole = 3-4 hr (Harden et al., 1988).

- Hardin TC, Graybill JR, Fetchick R, Woestenborghs R, Rinaldi MG, and Kuhn JG (1988) Pharmacokinetics of itraconazole following oral administration to normal volunteers. *Antimicrob Agents Chemother* **32**:1310-1313.
- Jacobson TA (1997) Comparative pharmacokinetic interaction profiles of pravastatin, simvastatin, and atorvastatin when co-administered with cytochrome P450 inhibitors. *Am J Cardiol* **94**:1140-1146.
- Jalava KM, Partanen J, and Neuvonen PJ (1997) Itraconazole decreases renal clearance of digoxin. Ther Drug Monit 19:609-613.
- Mazzu AL, Lasseter KC, Shamblen EC, Agarwal V, Lettieri J, and Sundaresen P (2000) Itraconazole alters the pharmacokinetics of atorvastatin to a greater extent than either cerivastatin or pravastatin. *Clin Pharmacol Ther* **68**:391-400.
- Neuvonen PJ, Kantola T, and Kivistö KT (1998) Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. *Clin Pharmacol Ther* **63**:332-341.
- Shen H, Christopher L, Lai Y, Gong J, Kandoussi H, Garonzik S, Perera V, Garimella T, and Humphreys WG (2018) Further studies to support the use of coproporphyrin I and III as novel clinical biomarkers for evaluating the potential for organic anion transporting polypeptide 1B1 and OATP1B3 inhibition. *Drug Metab Dispos* **46**:1075-1082.

Table S2 Clinical assessment of rifampicin as inhibitor of CYP3A and Pgp; digoxin and dabigatran etexilate as Pgp probes; and midazolam as CYP3A probe

Oral rifampicin	Oral probe drug (dose)	Probe dose timing vs	% Increase in	Reference
dose (mg)		rifampicin dose	probe plasma AUC	
600	Digoxin (0.5 mg)	Co-dose	29.9	Kirby et al., 2012
600	Digoxin (0.5 mg)	1 hr after rifampicin	46.2	Reitman et al., 2011
600	DABE (0.375 μg) ^a	Co-dose	132ª	Prueksaritanont et al., 2017
600	Midazolam (33 µg)	Co-dose	14.7	Maeda et al., 2011
600	Midazolam (0.07 mg)	Co-dose	21.3	Yoshikado et al., 2017
600	Midazolam (10 µg)	Co-dose	5.6	Prueksaritanont et al., 2017

^aDosed as dabigatran etexilate (DABE) prodrug but DDI reported out as AUC of parent drug dabigatran.

- Kirby BJ, Collier AC, Kharasch ED, Whittington D, Thummel KE, and Unadkat JD (2012) Complex drug interactions of the HIV protease inhibitors 3: effect of simultaneous or staggered dosing of digoxin and ritonavir, nelfinavir, rifampin, or bupropion. *Drug Metab Dispos* **40**:610-616.
- Maeda K, Ikeda Y, Fujita T, Yoshida K, Azuma Y, Haruyama Y, Yamane N, Kumagai Y, and Sugiyama Y (2011) Identification of the ratedetermining process in the hepatic clearance of atorvastatin in a clinical cassette microdosing study. *Clin Pharmacol Ther* **90**:575-581.
- Prueksaritanont T, Tatosian DA, Chu X, Railkar R, Evers R, Chavez-Eng C, Lutz R, Zeng W, Yabut J, Chan GH, Cai X, Latham AH, Hehman J, Stypinski D, Brejda J, Zhou C, Thornton B, Bateman KP, Fraser I, and Stoch SA (2017) Validation of a microdose probe drug cocktail for clinical drug interaction assessments for drug transporters and CYP3A. *Clin Pharmacol Ther* **101**:519-530.
- Reitman ML, Chu X, Cai X, Yabut J, Venkatasubramanian R, Zajic S, Stone JA, Ding Y, Witter R, Gibson C, Roupe K, Evers R, Wagner JA, and Stoch A (2011) Rifampin's acute inhibitory and chronic inductive drug interactions: experimental and model-based approaches to drug-drug interaction trial design. *Clin Pharmacol Ther* **89**:234-242.
- Yoshikado T, Maeda K, Furihata S, Terashima H, Nakayama T, Ishigame K, Tsunemoto K, Kusuhara H, Furihata KI, and Sugiyama Y (2017) A clinical cassette dosing study for evaluating the contribution of hepatic OATPs and CYP3A to drug-drug interactions. *Pharm Res* **34**:1570-1583.

Table S3

Rifampicin and its metabolites as solute carrier, Pgp and MRP2 substrates in vitro (Pfizer, unpublished data)

	Uptake ratio in HEK293 cells (vs mock HEK293 cells) ^a			
Substrate (Conc.)	NTCP	OATP2B1	OATP1B3	OATP1B1
Rifampicin (RIF) (0.2 µM)	1.1 ± 0.2	0.6 ± 0.1	2.5 ± 0.1	3.1 ± 0.1
3-Formyl RIF (0.2 μM)	1.1 ± 0.2	0.5 ± 0.1	5.5 ± 0.9	$\textbf{4.6} \pm \textbf{1.0}$
25-Desacetyl RIF (0.2 μM)	1.0 ± 0.1	0.6 ± 0.2	19 ± 1.7	23 ± 1.0
3-Formyl/25-Desacetyl RIF (0.2 µM)	1.1 ± 0.1	0.5 ± 0.2	32 ± 0.6	37 ± 3.4
Taurocholic acid (0.2 µM)	70.1 ± 10.6	_b	-	-
Rosuvastatin (1 µM)	-	8.2 ± 0.7	72.2 ± 18.2	97.9 ± 4.0

^aMean \pm SD of n = 3 determinations. ^bNot determined. Uptake ratio > 2 indicates compound is a substrate.

OATP, organic anion transporting polypeptide; NTCP, sodium-dependent taurocholate co-transporting polypeptide.

	MDCK cell line (transwell B-A/A-B flux ratio) ^a			
Substrate (2 µM)	MDCK cells expressing Pgp	MDCK cells expressing MRP2		
Rifampicin (RIF)	29.4, 21.3	36.1, 17.9		
3-Formyl RIF	175, 51.4	64.2, 18.0		
25-Desacetyl RIF	56.3, 54.7	5.5, 2.4		
3-Formyl/25-Desacetyl RIF	101 ^b	3.5 ^b		

^aValues for two different experiments shown. B-A, basolateral-to-apical flux; A-B, apical-to-basolateral flux. For MRP2 cell line, B-A/A-B ratio > 2 indicates compound is a substrate (all ratios reduced to ~1.0 with MRP2 inhibitor MK571, 0.1 mM). For Pgp cell line, compound is designated as substrate if B-A/A-B ratio > 6; quinidine (2 μ M) as positive control (B-A/A-B ratio = 125) and sertraline as negative control (B-A/A-B ratio = 3.2).

^bOnly one experiment was attempted.

Pgp, P-glycoprotein; MRP2, multidrug resistance-associated protein 2.

Table S4

Impact of various known CYP3A inducers on the PK of Pgp probe drugs digoxin and dabigatran

Object	Object	Precipitant	Precipitant	% Change AUC	Object Dose	Precipitant Dose
digoxin	Oral	phenytoin	Oral	-22.8	0.4 mg	0.2 g (7 days)
digoxin	Oral	phenytoin	Oral	-22.8	1 mg iv on day 1 and 0.4 mg po for 7 days (8 days)	0.2 g (8 days)
digoxin	Oral	rifampin	Oral	-30.4	0.25 mg	300 mg (7 days)
digoxin	Oral	rifampin	Oral	-30.3	1 mg	600 mg/day (10 days)
digoxin	Oral	rifampin	Oral	-21.1	0.5 mg	600 mg (14 days)
digoxin	Oral	rifampin	Oral	-18.2	0.5 mg	600 mg/day (6 days)
digoxin	Oral	rifampin	Oral	-16	0.5 mg	300 mg (7 days)
digoxin	Oral	rifampin	Oral	-15.6	0.4 mg	300 mg (7 days)
digoxin	Oral	st. John's wort	Oral	-28	0.2-0.3 loading dose followed by maintenance dose (21 days)	4 g encapsulated
digoxin	Oral	st. John's wort	Oral	-28	0.25 mg	300 mg (14 days)
digoxin	Oral	st. John's wort	Oral	-26.7	0.2-0.3 loading dose followed by maintenance dose (21 days)	hyperforin-rich extract
digoxin	Oral	st. John's wort	Oral	-25	0.25 mg (15 days)	300 mg (extract) (10 days)
dabigatran	Oral	carbamazepine	Oral	-31.8	75 mg (as dabigatran etexilate)	300 mg (26 days)
dabigatran	Oral	rifabutin	Oral	-24.9	75 mg (as dabigatran etexilate)	300 mg (26 days)
dabigatran	Oral	rifampin	Oral	-71.6	75 mg (as dabigatran etexilate)	600 mg (17 days)
dabigatran	Oral	rifampin	Oral	-67	150 mg	600 mg (8 days)
dabigatran	Oral	rifampin	Oral	-61.5	75 mg (as dabigatran etexilate)	75 mg (17 days)
dabigatran	Oral	rifampin	Oral	-35.6	75 mg (as dabigatran etexilate)	10 mg (17 days)

Data obtained on line at https://didb.druginteractionsolutions.org/