SUPPLEMENTARY INFORMATION

Is the Protein-Mediated Uptake Of Drugs By OATPs A Real Phenomenon Or An Artifact?

Mengyue Yin, Flavia Storelli and Jashvant D. Unadkat

Department of Pharmaceutics, University of Washington, Seattle, Washington (MY, FS and JDU)

Supplementary Figures

Supplementary Fig. 1. The statin uptake-time profiles for OATP1B1_RIF cells. The increase in the slope of the uptake curves in the presence of HSA vs. HBSS suggests a PMUE on the passive uptake of the statins. The increased intercept in the presence of HSA suggests NSB of statin-HSA complex to the cells/labware. Data shown are mean \pm standard deviation (SD) of statin uptake (normalized to 1 μ M unbound concentration) and are representative of three independent experiments, each conducted in triplicate at each time point.

Supplementary Fig. 2. Comparison of the amount of statin non-specifically bound to the cells (as statin-HSA complex; pink bars) and the increase in statin taken up by OATP1B1_RIF cells in the presence of 5% HSA *vs.* HBSS (green bars). The increase in the uptake of ATV, FLV, PTV and RSV in the presence of 5% HSA (*vs.* HBSS) can be completely explained by the NSB of the stain-HSA complex to the OATP1B1_RIF cells. However, this was not the case for CRV. The uptake data shown have been corrected for small differences in unbound concentration and total protein content between each experiment. Data shown are mean \pm SD of three independent experiments, each conducted in triplicate. Statistical comparison between the increase in statin uptake in the presence of 5% HSA and NSB was performed using the Student's t test (* p < 0.05; ** p < 0.01).

DMD-AR-2022-000849R1

Supplementary Fig. 1.

A Atorvastatin

С

D

E

B

Supplementary Fig. 2.

DMD-AR-2022-000849R1

Supplementary Tables

Supplementary Table. 1 LC-MS/MS conditions

LC method for quantification of the 5 statins

Time	Flow Rate	%A	%B
Initial	0.5	90	10
0.5	0.5	90	10
0.7	0.5	5	95
2.2	0.5	5	95
2.3	0.5	90	10
3	0.5	90	10

A: 0.1% formic acid in water; B: 0.1% formic acid in acetonitrile

MS conditions for quantification of the 5 statins

Compound ID	ESI Mode	Q1 Mass (Da)	Q3 Mass (Da)	DP (volts)	CE (volts)	CXP (volts)
Atorvastatin	Positive	559	250.1	60	60	10
Cerivastatin	Positive	460.3	356.3	100	40	10
Fluvastatin	Positive	412	41	15		
Pitavastatin	Positive	422.2	290.2	90	35	17
Rosuvastatin	Positive	482.3	258.2	80	30	10
Diclofenac (IS)	Positive	295.82	213.9	40	45	9

ESI, electrospray ionization; DP, declustering potential, CE, collision energy; CXP, collision cell exit potential.

LC method for quantification of HSA and Na⁺K⁺ATPase

Time Flow Rate	%A	%B
----------------	----	----

Initial	0.3	97.0	3.0
3.00	0.3	97.0	3.0
10.00	0.3	87.0	13.0
20.00	0.3	75.0	25.0
22.00	0.3	66.7	33.3
22.90	0.3	50.0	50.0
23.00	0.3	20.0	80.0
24.10	0.3	20.0	80.0
24.20	0.3	97.0	3.0
28.00	0.3	97.0	3.0

A: 0.1% formic acid in water; B: 0.1% formic acid in acetonitrile

MS conditions for quantification of HSA and $Na^{\scriptscriptstyle +}K^{\scriptscriptstyle +}ATPase$

Compound ID	Peptide Sequence	ESI Mode	Q1 Mass (Da)	Q3 Mass (Da)	DP (volts)	CE (volts)	CXP (volts)
HSA F1	VFDEFKPLVEEPQNLIK	Positive	682.65	712.65	170	45	12
HSA F2	(unlabeled)	Positive	682.65	970.75	170	45	12
HSA IS F1	VFDEFKPLVEEPQNLI K	Positive	685.35	712.65	170	45	12
HSA IS F2	(labeled)	Positive	685.35	978.75	170	45	12
Na ⁺ K ⁺ ATPase F1		Positive	414.235	685.388	61.3	18	12
Na ⁺ K ⁺ ATPase F2	AAVPDAVG K	Positive	414.235	586.320	61.3	18	12
Na ⁺ K ⁺ ATPase IS F1	(labeled)	Positive	418.242	693.402	61.3	18	12
Na ⁺ K ⁺ ATPase IS F2		Positive	418.242	594.334	61.3	18	12

DMD-AR-2022-000849R1

ESI, electrospray ionization; DP, declustering potential, CE, collision energy; CXP, collision cell exit potential; F1/2, fragment 1/2. Bolded letters indicate the labeled amino acids.

Supplementary Table. 2 In vitro apparent hepatic uptake intrinsic clearance of the 5 statins into OATP1B1-expressing or MOCK cells for

the HBSS and HSA (1%, 2% and 5%) conditions

			HBSS			1% HSA					2% HSA					5% HSA				
David	CLint,tota	СІ (µl р	∠int,passive [%] l/min/mg protein)	СL (µ) Г	^{int,OATP1B1[*] l/min/mg protein)}	CL _{int,tota}	СІ (µl р	∠int,passive [%] I/min/mg protein)	CL (µ 1	^{int,OATP1B1[*] l/min/mg protein)}	CLint,tota	СІ (µ) F	^{int,passive} [%] l/min/mg protein)	СL (µl Р	nt,OATP1B1 [*] /min/mg rotein)	CL _{in} (µl/m	nt,total [#] in/mg	CL _{int,passive} % (µl/min/m g protein)	CL _{in} (µl/min	nt,OATP1B1 [*] /mg protein)
Drug	(μι/min/ mg protein	Based	Based on passive uptake in		d on passive ptake in	mg protein	mg Based on passive rotein uptake in		Based on passive uptake in		μι/min/ mg protein	Based on passive uptake in		Based on passive uptake in		protein)		Based on passive uptake in	Based on passive uptake in	
)	MO CK	OATP1B1 _RIF	MO CK	OATP1B1 _RIF)	MO CK	OATP1B1 _RIF	MO CK	OATP1B1 _RIF)	MO CK	OATP1B1 _RIF	MO CK	OATP1B1 _RIF		MO CK	OATP1B1 _RIF	MOC K	OATP1B1 _RIF
Atorvast atin	43.2 (35.8)	2.1 (24.2)	3.7 (24.2)	41.1	39.5	76.7 (9.5)	3.6 (17.2)	6.6 (29.1)	73.1	70.1	101.5 (26.9)	4.3 (17.3)	9.6 (20.5)	97.2	91.9	94.9 (30. 2)	7.8 (30.4)	13.3 (39.5)	87.1	81.6
Cerivast atin	39.2 (18.3)	15.0 (22.1)	17.5 (22.8)	24.2	21.7	84.5 (29.5)	40.1 (41.9)	58.3 (23.4)	44.4	26.1	161.5 (26.4)	72.5 (10.5)	100.1 (24.2)	88.9	61.4	199. 2 (34. 2)	121. 8 (9.4)	159.8 (28.9)	77.4	39.4
Fluvastat in	32.1 (20.6)	8.6 (27.7)	7.5 (30.1)	23.5	24.6	95.1 (21.2)	23.3 (6.9)	23.2 (18.4)	71.7	71.9	151.8 (16.5)	43.2 (31.4)	43.8 (33.6)	108. 6	108.0	224. 4 (12. 9)	123. 5 (7.5)	116.1 (47.2)	100.9	108.3
Pitavasta tin	79.2 (28.9)	3.7 (41.6)	7.4 (23.0)	75.5	71.9	264.7 (19.9)	9.7 (33.2)	11.4 (7.3)	255. 0	253.3	285.2 (17.4)	18.9 (42.9)	26.2 (31.4)	266. 4	259.1	294. 7 (24. 2)	45.0 (29.6)	39.1 (11.1)	249.7	255.7
Rosuvast atin	15.3 (40.0)	0.15 (33.4)	0.48 (15.4)	15.1	14.8	15.7 (42.9)	0.30 (40.2)	0.58 (2.8)	15.4	15.1	15.3 (16.2)	0.57 (33.1)	0.94 (38.1)	14.8	14.4	16.3 (27. 0)	1.79 (25.9)	1.62 (31.4)	14.5	14.7

CL_{int,total} - Apparent total uptake clearance into OATP1B1-expressing HEK293 cells. % CL_{int,passive} - Apparent passive uptake clearance into either

MOCK or OATP1B1_RIF HEK293 cells. $*CL_{int,OATP1B1}$ = mean $CL_{int,total}$ -mean $CL_{int,passive}$ where the $CL_{int,passive}$ measured in the MOCK cells or the

OATP1B1_RIF cells was used. Data shown are mean (CV%) values of three to five independent experiments.