Supplementary Information

Relevance of Human Aldoketoreductases and Microbial $\beta\mbox{-}Glucuronidases$ in

Testosterone Disposition

Abdul Basit¹, John K. Amory², Vijay Saradhi Mettu¹, Cindy Yanfei Li³, Scott Heyward⁴, Parth B. Jariwala⁵, Matthew R. Redinbo⁵ and Bhagwat Prasad¹

¹Department of Pharmaceutical Sciences, Washington State University, Spokane, WA

²Department of Medicine, University of Washington, Seattle, WA

³Department of Pharmaceutics, University of Washington, Seattle, WA

⁴BioIVT Inc., Baltimore, MD

⁵Departments of Chemistry, Biochemistry and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Running title: AKRs and GUSs in Testosterone Disposition

Corresponding author: Bhagwat Prasad, Ph.D., Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA. Phone: +1-509-358-7739. Fax: +1 509-368-6561. Email: <u>bhagwat.prasad@wsu.edu</u>

Fig. S1: Protein interactome analysis by STRING from downregulated proteins in UGT2B17 deletion. Significantly downregulated proteins include UGT2B17, CYP3A5, CYP1A2, and SULT2A1

Fig. S2: In vitro formation of testosterone metabolites by AKR pathway when incubated at 1 μ M for 30 min with human liver cytosol from UGT2B17 gene deletion subjects.

Fig. S3: Negative correlation between TG and THT formation from testosterone incubation in human hepatocytes with high and low UGT2B17 expression.

Table S1: MRM transitions used testosterone	for quantification	of various primary a	nd secondary metab	olites of	
Metabolite	Adduct	Precursor ion (m/z)	Daughter Ion (m/z)	CV (V)	CE (eV)
	[M+H] ⁺	291.1	147.1	30	20
5β-DHT	[M+H]+	291.1	159	30	20
	[M+H] ⁺	291.1	255	30	20
	[M+H- H ₂ O] ⁺	275.1	161	30	20
5β, 3α-ΤΗΤ	[M+H- H ₂ O] ⁺	[M+H- H ₂ O] ⁺ 275.1		30	15
	[M+H- H ₂ O] ⁺	275.1	257	30	15
	[M+H] ⁺	467.1	147.1	30	23
	[M+H] ⁺	467.1	159	30	23
SB-DHI-Gluc	[M+H] ⁺	467.1	255	30	27
	[M+H] ⁺	467.1	273.1	30	27
5β, 3α-THT-Gluc	[M+H- H ₂ O] ⁺	451.1	161	30	25
	[M+H- H ₂ O] ⁺	1+H- 2O] ⁺ 451.1 174.8		30	20
	[M+H- H₂O]⁺	451.1	257	30	20
	[M+H- H₂O]⁺	451.1	275.1	30	20
AG-d4	[M+H- H₂O]⁺	453.2	259.2	35	30
	[M+H- H₂O]⁺	453.2	277.4	35	22
	[M+NH4] ⁺	488.3	259.3	35	30
т	[M+H] ⁺	289.1	109.1	35	30
Ι	[M+H] ⁺	289.1	289.1 97.1		30
T-d3	[M+H]⁺	292.2	92.2 97.1		30
	[M+H] ⁺	292.2	109.1	35	30
	[M+H] ⁺	465.2	289.2	35	30
epiTG	[M+H] ⁺	465.2	97.1	35	40
	[M+H] ⁺	465.2	109.1	35	40
	[M+H]+	465.2	289.2	35	30
TG	[M+H]⁺	465.2	97.1	35	40
	[M+H] ⁺	465.2	109.1	35	40
	[M+H] ⁺	468.2	292.2	35	30
TG-d3	[M+H] ⁺	468.2	97.1	35	40
	[M+H]⁺	468.2	109.1	35	40

Table S2 : Optimized enzyme concentration and pH used for TG deconjugation screening assay using the listed bacterial β -glucuronidases					
Bacterial species	Final enzyme concentration (nM)	Optimized pH			
Escherichia coli	5	6.5			
Eubacterium eligens	5	6.5			
Lactobacillus rhamnosus	30	6.5			
Bacteroides uniformis	30	6			
Roseburia hominis	5	6			
Bacteroides fragilis	25	5			
Bacteroides ovatus	30	5			
Akkermansia muciniphila	20	6.5			
Bacteroides coprocola	50	4			
Bacteroides nordi	50	5			

Table S3: MRM transitions for testosterone and testosterone glucuronide using AB SCIEX 6500						
Metabolite	Adduct	Precursor ion (m/z)	Daughter Ion (m/z)	DP (V)	CE (eV)	
т	[M+H] ⁺	289.1	109.1	80	30	
I	[M+H] ⁺	289.1	97.1	80	30	
	[M+H] ⁺	465.2	289.2	70	25	
TG	[M+H]+	465.2	271.2	70	30	
	[M+H] ⁺	465.2	109.1	70	35	
	[M+H] ⁺	468.2	292.2	70	25	
TG-d3	[M+H] ⁺	468.2	274.2	70	30	
	[M+H] ⁺	468.2	256.2	70	35	
T-d3	[M+H]+	292.2	97.1	80	30	
	[M+H]+	292.2	109.1	80	30	

Table S4: Differentially elevated metabolites in serum after oral testosterone dosing in men							
Metabolite ID	Fold-	P value	Exact	Predose		Testosterone treated	
	change		mass (m/z)	mean1	sd1	mean2	sd2
M486T45	135.8	9.45E-06	486.3061	564555	277163	76673454	14724405
M274T47_2	35.9	1.57E-05	274.2245	2215813	1009919	79627571	16457424
M451T54_1	108.1	7.99E-04	451.3248	448115	624399	48440130	20437127
M403T68_1	376.9	5.21E-07	403.2326	160100	117231	60347036	7121192
M449T47	103.2	7.36E-04	449.2533	695862	805690	71816597	29813267
M520T61_1	56.3	1.50E-03	519.8652	761412	544347	42854221	20225532
M432T47_1	137.3	9.99E-04	432.2461	678100	1070656	93102785	41053663
M234T38	63.2	8.76E-05	234.1699	2008252	369723	126976655	35564331
M484T47_1	105.7	3.08E-08	484.2904	2097666	4619778	221652247	19651543
M238T44_2	70.4	8.51E-07	238.1801	3508011	2393181	246926861	31785644
M376T52_2	103.6	8.55E-04	376.2594	2626951	2706553	272237792	116264603
M302T45_3	51.5	1.19E-03	302.1961	4193737	2531590	216117969	97276040
M450T54_2	42.1	8.69E-04	450.3213	4052959	4876921	170821561	72395557
M274T37_3	189.8	2.23E-06	274.2011	1772298	2057781	336402349	50803785
M465T39_2	846.6	5.71E-05	465.2482	429006	829933	363186969	95756105
M431T47	582.7	9.41E-04	431.2427	592296	293753	345146904	151224744