Molecular Pharmacology Supplemental Materials

Activation of Cryptic Donor Splice Sites Within the UGT1A First-Exon Region Generates Variant Transcripts That Encode UGT1A Proteins With Truncated Aglycone-binding Domains Dong Gui Hu, Shashikanth Marri, Julie-Ann Hulin, Radwan Ansaar, Peter I. Mackenzie, Ross A. McKinnon, and Robyn Meech

Legends of Supplemental Figures

Supplemental Fig. 1. Sequences of variant UGT1A first exons. Shown are the sequences for eight variant UGT1A first exons that are generated using cryptic donor sites within the UGT1A first-exon region, including *1A1E1v* (A), *1A3E1v1* (B), *1A3E1v2* (C), *1A4E1v* (D), *1A5E1v* (E), *1A8E1v* (F), *1A9E1v* (G), *1A10E1v* (H). The nucleotide sequences of variant first exons (BLUE) are positioned at the right according to the human GRCh38/hg38 genome assembly. The start ATG codons and the dinucleotide GT splice signals of the novel cryptic donor splice sites are also indicated.

Supplemental Fig. 2. Predicted sequences for variant UGT1A proteins. Shown are the sequences for eight predicted UGT1A variant proteins, including 1A1_in1 (A), 1A3_in3 (B), 1A3_in4 (C), 1A4_in4 (D), 1A5_in1 (E), 1A8_in2 (F), 1A9_in2 (G), and 1A10_in7 (H). The sequences encoded by the first exons and exons 2-5 are indicated in BLUE and RED, respectively. 1A3_in3 has a novel 77-aa C-terminal peptide (GREEN) but lacks the sequence encoded by exons 2-5.

Supplemental Figure 3. Sequence reads for variant UGT1A transcripts. Shown are the sequence reads (100 nucleotides) for variant transcripts 1A4_n4 (A), 1A8_n2 (B) and 1A9_n2 (C) identified from the UGT-enriched CaptureSeq datasets (GSE80463) using transcript-specific probes and the Sequence Read Archive (SRA) platform. The transcript-specific splice

junctions are indicated by a vertical RED line. The nucleotide positions of the 3' ends of the three variant first exons (1A4E1v, 1A8E1v, 1A9E1v) are also indicated.

Supplemental Fig. 4. Expression of variant transcripts 1A8_n2 and 1A9_n2 in normal and drug-metabolizing tissues. Using transcript-specific probes and the Sequence Read Archive (SRA) platform, the sequence reads of canonical (1A8_v1, 1A9_v1) and variant (1A8_n2, 1A9_n2) transcripts were identified in fifteen CaptureSeq samples (GSE80463) generated from normal and cancerous drug-metabolizing tissues as indicated. The number of sequence reads for each transcript was normalized using the number of total sequence reads in the same sample and then presented as the relative reads of this transcript per 10⁹ reads of the total sequence reads. Shown are the expression level of 1A8_n2 (A), 1A9_n2 (C), and the expression ratio for 1A8_n2/1A8_v1 (B), or 1A9_n2/1A9_v1 (D) in fifteen CaptureSeq samples.

Supplemental Figure 5. Variant UGT1A transcripts and proteins. (A) RT-PCR was conducted using cDNA samples of colorectal cancer HT-29 cells and primers to clone the full coding sequence of canonical UGT1A8 mRNA (1A8_v1) or UGT1A10 mRNA (1A10_v1). The resultant amplicons were run on an ethidium-bromide-stained agarose gel and imaged using UV-illumination. (B) HEK293T cells were transfected with constructs expressing no UGT protein (control), wildtype (1A8_i1) and variant (1A8_i3) UGT1A8 proteins alone and in combination (1A8_i1 + 1A8_i3) as indicated. Lysates of transfected cells were subjected to standard Western blotting assays using a pan-UGT1A antibody and imaged using chemiluminescent agents as described in *Materials and Methods*. (C) Glucuronidation of HEK293T lysates transfected with vectors expression 1A8_i1 or 1A8_i3 alone and in combination were conducted using HPLC assays. The activity of 4MU glucuronidation was

normalized to the band intensities of western blots obtained using equal amounts of HEK293T lysates of the same samples used for 4MU activity assays as described in *Materials and Methods*. Shown is the mean plus SD of 4MU-glucuronidation activity of $1A8_i1/_i3$ -transfected cells normalized to that of $1A8_i1$ -transfected cells (set as a value of 100%) from three independent experiments. Student's t-test, p < 0.05 is considered statistically significant.

Supplemental Fig. 6. **Sequencing results identified the 1A8_n2 transcript in HT-29 cells**. The 1A8_n2 transcript has a variant first exon (*1A8E1v*) and common UGT1A exons 2-5. Shown are the sequencing chromatograms of a cloned pEF_IRESpuro6 construct from the HT-29 cell line that contains the 1A8_n2 transcript-specific splice junction (1A8E1v/1AE2) and all other four UGT1A common splice junctions [1AE2/1AE3, 1AE3/1AE4, 1AE4/1AE5]. All splice junctions are indicated by a vertical line. nt: nucleotide; AA: amino acid.

Supplemental Fig. 7. Sequencing results identified the 1A10_n7 transcript in HT-29 cells.

The 1A10_n7 transcript has a variant first exon (*1A10E1v*) and common UGT1A exons 2-5. Shown are the sequencing chromatograms of a cloned pEF_IRESpuro6 construct from the HT-29 cell line that contain the 1A10_n7 transcript-specific splice junction (1A10E1v/1AE2) and all UGT1A common splice junctions [1AE2/1AE3, 1AE3/1AE4, 1AE4/1AE5]. All splice junctions are indicated by a vertical line. nt: nucleotide; AA: amino acid

Supplemental Fig. 8. Variant transcripts UGT1A8_n2 and UGT1A10_n7 generated using novel cryptic donor splice sites within UGT1A first exons in colorectal cancer HT-29 cells. (A) Shown are the exon structures of the UGT1A8 pre-mRNA (Aa), mRNA (1A8_v1) (Ab), and variant transcript (1A8_n2). Pre-mRNA splicing using the 1A8 canonical and cryptic donor splice sites generates 1A8 mRNA (1A8_v1) (Ab) and variant 1A8_n2 (Ac), respectively. (B) Shown are the exon structures of the UGT1A10 pre-mRNA (Ba), mRNA (1A10_v1) (Bb), and variant transcript (1A10_n7). Pre-mRNA splicing using the 1A10 canonical and cryptic donor splice sites generates 1A10 mRNA (1A10_v1) (Bb) and variant 1A10_n7 (Bc), respectively. The sequencing results covering the 1A8_n2 (Ad) or 1A10_n7 (Bd) novel splice junction are also shown. The donor and acceptor splice signal dinucleotides are indicated GT and AG, respectively.

		star	t ATG codon					
F	catgtattec tttttttta <u>GIGCCIGIAG</u> TGCTGGCTCG	tqttcttatq tqacaqgata TPCTICCGCC GGCTGCAGTT	agtaaatcat aatacacgcc FACYGTAYCA CTCTCA2GGC	tqqcaqtqaq ctctattqqq TAGCAGCYTA TCGCACAGGG	lqlqatttt gtcagqtttt GAATCCCAGC TGGACCAGCC	233617582 233617632 233617682 233617782		
	GGGAAGCTGC GTCGGTGGTG TGCCAGAGGT	AUGIGUTUU IGGTAGIGCC GAGAAACTIA GAGTIGGCAA	CATGGATGGG TCCTCAGGGG CTGGGAAAAT	AGICACIGGI GCATGAGGIG CACIGAATIG	TCACCATGCA GTIGTAGTCA CACAGTGAAG	23361782 233617832 233617882 233617932		
	ACTIACTCAA TITCGCCGAT LLCLGAGLLC	GCTCAATGGA alccaalggl	AAGCACAAgt LUULULaacu	acgaagtttg Lattitttc	ttttctctat gcallgcagg	233617982 233618032 233618082		
	GT: donor splice site							
		end of	LASE1v					

start of UGT1A9 exon 1 (NM_021027.3) start ATG codon

		end of IA9E1v							
				GT: donor splice site					
	tatattetet	allaalgggl	teatacaate	acalttilga	citatitit	233672297			
	GGAGTTCAAG	GCTITTGCCC	ATGCTCAATG	GAAAGCACAA	gtacgaagta	233672247			
	TGCACAGTGA	AGACTTATTC	AACTTCATAT	ACCCTGGAGG	ATCTGGACCG	233672197			
	TGGTTCTACT	CATOCCAGAG	GTCAGTTOCC	AACTGOCAAC	ATCACTGAAT	233672147			
U U	GTTCACCATG	AGGICGGIGG	TGGAGAAACT	CATTCTCAGG	GGGCATGAGG	233672097			
G	TTTGCCGAGG	CAGGGAAGCT	ACTEGTAGTE	CCCATGGATG	GGAGCCACTG	233672047			
	CGTCGACCAC	CCCCCTTCCT	CTATGTGTGT	CICICCICT	GACCTGTCGC	233671997			
	AGATTOCCAG	CIECTICIC	TCAGCTGCAG	TTCTCTGATG	GCTTGCACAG	233671947			
	ggleagglil	lgigelggia	llicicecae	clacigiate	alaggagett	233671897			
	cagtgactga	ttttttttt	atgaaaggat	aaaaacaege	cctctattgg	233671847			

		start ATG codon								
	tgttatcgtt	cttatgagta	aatcattggc	agtgagtgtg	atttttttt	233636402				
	ttttatgaaa	ggataaatac	acgeceteta	ttggggtcag	gttttgtgcc	233636452				
	TGTACITCIT	CCGCCTACTG	TATCATAGCA	GCTTAGAATC	CCAGCIGCIG	233636502				
Н	GCTCGGGCTG	CAGTTCTCTC	ATGGCTCGCG	CAGGGTGGAC	CAGCCCCGTT	233636552				
••	CCTTTATGTG	TGTGTCTACT	GCTGACCTGT	GGCTTTGCCG	AGGCAGGGAA	233636602				
	GCTGCTGGTA	GTGCCCATGG	ATGGGAGTCA	CTGGTTCACC	ATGCAGTOGG	233636652				
	TGGTGGAGAA	ACTTATCCTC	AGGGGGCATG	AGGTGGTTGT	AGTCATGCCA	233636702				
	GAGgtgagtt	ggcaactgga	aagatcactg	aattgcacag	tgaagactta	233636752				
	ctcaacctcg	tacactetqg	aagatcagaa	cogggaatte	atggttttcg	233636802				
	GT: dono	or splice site								

end of 1A10E1v

Protein predicted from transcript 1A1_n1 (487 aa)

MAVESQGGRPLVLGLLLCVLGPVVSHAGKILLIPVDGSHWLSMLGAIQQLQQRGHEIVVLAPDASLYIRDGAFYTLKTYPVPFQREDVKE SFVSLGHNVFENDSFLQRVIKTYKKIKKDSAMLLSGCSHLLHNKELMASLAESSFDVMLTDPFLPCSPIVAQYLSLPTVFFLHALPCSLE FEATQCPNPFSYVPRPLSSHSDHMTFLQRVKNMLIAFSQNFLCDVVYSPYATLASEFLQREEFEAYINASGEHGIVVFSLGSMVSEIPEK KAMAIADALGKIPOTVLWRYTGTRPSNLANNTILVKWLPONDLLGHPMTRAFITHAGSHGVYESICNGVPMVMMPLFCDOMDNAKRMETK

A FEATQCENEFSYVERPLSSHSDHMTFLQRVKNMLIAFSQMFLCDVVYSPYATLASEFLQREEFEAYINASGEHGIVVFSLGSMVSEIPEK KAMAIADALGKIPQTVLWRYTGTRPSNLANNTILVKWLPQNDLLGHPMTRAFITHAGSHGVYESICNGVPMVMMPLFGDQMDNAKRMETK GAGVTLNVLEMTSEDLENALKAVINDKSYKENIMRLSSLHKDRPVEPLDLAVFWVEFVMRHKGAPHLRPAAHDLTWYQYHSLDVIGFLLA VVLTVAFITFKCCAYGYRKCLGKKGRVKKAHKSKTH

Protein predicted from transcript 1A3_n3 (239 aa)

B MATGLQVPLPWLATGLLLLLSVQPWAESGKVLVVPIDGSHWLSMREVLRELHARGHQAVVLTPEVNMHIKEENFFTLTTYAISWTQDEFD RHVLGHTQLYFETEHFLKKFFRSMAMLNNMSLVYHRSCVELLHNEALIRHLNATSFDVVLTDPVNLCAAVLAKNLKPTLMLLENMELWFS LWDQWSQKFQRRKLWQLLMLWAKSLRQSCGGTLEPDHRILRTTRYLLSGYPKTICLVTR

Predicted protein from transcript 1A3_n4 (309 aa)

MATGLQVPLPWLATGLLLLLSVQPWAESGKVLVVPIDGSHWLSMREVLRELHARGHQAVVLTPEEFEAYINASGEHGIVVFSLGSMVSEI PEKKAMAIADALGKIPQTVLWRYTGTRPSNLANNTILVKWLPQNDLLGHPMTRAFITHAGSHGVYESICNGVPMVMMPLFGDQMDNAKRM ETKGAGVTLNVLEMTSEDLENALKAVINDKSYKENIMRLSSLHKDRPVEPLDLAVFWVEFVMRHKGAPHLRPAAHDLTWYQYHSLDVIGF

LLAVVLTVAFITFKCCAYGYRKCLGKKGRVKKAHKSKTH

С

Predicted protein from transcript 1A4_n4 (309 aa)

D MARGLQVPLPRLATGLLLLLSVQPWAESGKVLVVPTDGSPWLSMREALRELHARGHQAVVLTPÆFEAYINASGEHGIVVFSLGSMVSEI PEKKAMAIADALGKIPQTVLWRYTGTRPSNLANNTILVKWLPQNDLLGHPMTRAFITHAGSHGVYESICNGVPMVMMPLFGDQMDNAKRM ETKGAGVTLNVLEMTSEDLENALKAVINDKSYKENIMRLSSLHKDRPVEPLDLAVFWVEFVMRHKGAPHLRPAAHDLTWYQYHSLDVIGF LLAVVLTVAFITFKCCAYGYRKCLGKKGRVKKAHKSKTH

Predicted protein from transcript 1A5_n1 (309 aa)

E MATGLQVPLPQLATGLLLLLSVQPWAESGKVLVVPTDGSHWLSMREALRDLHARGHQVVVLTLEEFEAYINASGEHGIVVFSLGSMVSEI PEKKAMAIADALGKIPQTVLWRYTGTRPSNLANNTILVKWLPQNDLLGHPMTRAFITHAGSHGVYESICNGVPMVMMPLFGDQMDNAKRM ETKGAGVTLNVLEMTSEDLENALKAVINDKSYKENIMRLSSLHKDRPVEPLDLAVFWVEFVMRHKGAPHLRPAAHDLTWYQYHSLDVIGF LLAVVLTVAFITFKCCAYGYRKCLGKKGRVKKAHKSKTH

Predicted proetin (termed 1A8_i3) from transcript 1A8_n2 (346 aa)

 $\label{eq:martgwtspiplcvsllltcgfaeagkllvvpmdgshwftmqsvveklilrghevvvvmpevswqlgkslnctvktystsytledldref for an and a state of the state$

Predicted protein from transacript 1A9 n2 (346 aa)

G MACTGWTSPLPLCVCLLLTCGFAEAGKLLVVPMDGSHWFTMRSVVEKLILRGHEVVVVMPEVSWQLGRSLNCTVKTYSTSYTLEDLDREF KAFAHAQWKAQEFEAYINASGEHGIVVFSLGSMVSEIPEKKAMAIADALGKIPQTVLWRYTGTRPSNLANNTILVKWLPQNDLLGHPMTR AFITHAGSHGVYESICNGVPMVMMPLFGDQMDNAKRMETKGAGVTLNVLEMTSEDLENALKAVINDKSYKENIMRLSSLHKDRPVEPLDL AVFWVEFVMRHKGAPHLRPAAHDLTWYQYHSLDVIGFLLAVVLTVAFITFKCCAYGYRKCLGKKGRVKKAHKSKTH

Predicted protein(termed 1A10_i3)from transcript 1A10_n7(306 aa)

MARAGWTSPVPLCVCLLLTCGFAEAGKLLVVPMDGSHWFTMQSVVEKLILRGHEVVVVMPEEFEAYINASGEHGIVVFSLGSMVSEIPEK KAMAIADALGKIPQTVLWRYTGTRPSNLANNTILVKWLPQNDLLGHPMTRAFITHAGSHGVYESICNGVPMVMMPLFGDQMDNAKRMETK GAGVTLNVLEMTSEDLENALKAVINDKSYKENIMRLSSLHKDRPVEPLDLAVFWVEFVMRHKGAPHLRPAAHDLTWYQYHSLDVIGFLLA VVLTVAFITFKCCAYGYRKCLGKKGRVKKAHKSKTH

Supplemental Fig. 3.

Supplemental Fig. 4.

В

С

Supplemental Fig. 5

A

	NCBI RefSeq	NCBI RefSeq	Experimental validation of transcript expression					
	(mRNAs)	(proteins)	Predicted proteins (aa)	RT-PCR	Cloning	CaptureSeq with UGT- enrichment	RNAseq without UGT enrichment	Western blotting
UGT1A1 UGT1A1_v1 UGT1A1_v2 UGT1A1_v3 UGT1A1_n1* UGT1A1_n2 UGT1A1_n3	NM_000463.3	NP_000454 (533 aa)	487	イイ	イイン		イ イ イ イ	イイン
UGT1A2P UGT1A2P_n1 UGT1A2P_n2 UGT1A2P_n3 UGT1A2P_n4 UGT1A2P_n5 UGT1A2P_n6 UGT1A2P_n7 UGT1A2P_n8 UGT1A2P_n9 UGT1A2P_n10 UGT1A2P_n11						インマン		
UGT1A3_V1 UGT1A3_V2 UGT1A3_V3 UGT1A3_n1 UGT1A3_n2 UGT1A3_n3 UGT1A3_n4	NM_019093.4	NP_061966 (534 aa)	239 309	イイ	イイイ	イイン	$\frac{1}{\sqrt{2}}$	イイ
UGT1A4_v1 UGT1A4_v2 UGT1A4_v2 UGT1A4_v3 UGT1A4_n1 UGT1A4_n2 UGT1A4_n3 UGT1A4_n4	NM_007120.3	NP_009051 (534 aa)	309	イイ	$\begin{array}{c} \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \end{array}$	インシン	\checkmark	$\begin{array}{c} \checkmark \\ \checkmark \\ \checkmark \end{array}$
UGT1A5_v1 UGT1A5_v1 UGT1A5_v2 UGT1A5_v3 UGT1A5_n1	NM_019078.2	NP_061951 (534 aa)	309	イイ	$\sqrt[]{}$	イイ	\checkmark	イン
UGT1A6_v1 UGT1A6_v2 UGT1A6_v2 UGT1A6_n3 UGT1A6_n3 UGT1A6_n4	NM_001072.4	NP_001063 (532 aa)		イイ	イイ	イ イ イ イ イ イ イ イ イ イ イ イ イ イ イ イ イ イ イ		イイ
UGT1A7_v1 UGT1A7_v1 UGT1A7_v2 UGT1A7_v3 UGT1A7_n1	NM_019077.3	NP_061950 (530 aa)		\sim \sim \sim	$\frac{1}{\sqrt{2}}$	インシン		$\sqrt[n]{\sqrt{1}}$

Supplemental Table 7: Known UGT1A transcripts and novel UGT1A variant transcripts identified in this study that are named using the current UGT1A nomenclature (Tourancheau A et al 2016)

UGT1A9 UGT1A9_v1 UGT1A9_v2 UGT1A9_v3 UGT1A9_n1 UGT1A9_n2	NM_021027.3	NP_066307 (530 aa)	346	イン	イ イ イ	インシン	V	$\sqrt[]{}$
UGT1A10 UGT1A10_v1 UGT1A10_v2 UGT1A10_v3 UGT1A10_n4 UGT1A10_n5	NM_019075.4	NP_061948 (530 aa)		イン	$\frac{1}{\sqrt{2}}$	インシン		\checkmark \checkmark
UGT1A10_n6 UGT1A10_n7			306	\checkmark	\checkmark			
UGT1A8 UGT1A8_v1 UGT1A8_v2 UGT1A8_v3 UGT1A8_n1 UGT1A8_n2	NM_019076.5	NP_061949 (530 aa)	346	イント	イ イ イ	イ イ イ イ	\checkmark	
Other UGT1A UGT1A_n1 UGT1A_n2 UGT1A_n3 UGT1A_n4 UGT1A_n5 UGT1A_n6 UGT1A_n7 UGT1A_n7 UGT1A_n8 UGT1A_n9 UGT1A_n10 UGT1A_n11 UGT1A_n12 UGT1A_n13 UGT1A_n14 UGT1A_n15 UGT1A_n16 UGT1A_n17 UGT1A_n18 UGT1A_n20 UGT1A_n21 UGT1A_n22							~~~~~~~~~~~	

UGT1A transcripts highlighted in bold are reported in the present study and all others are reported by Tourancheau et al 2016 and several other studies (e.g. Levesque E et al 2007 and Giard H et al 2007). Also listed are the evidence for the synthesis of these transcripts in human tissues and cell lines from one or multiple experimental approaches, such as RT-PCR, Cloning, CaptureSeq, RNA-seq and Western Blotting assays. * This variant was also previously described in Tourancheau et al 2016.