Skip to main content

Unique cytochromes P450 in human brain: implication in disease pathogenesis

  • Conference paper

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 70))

Summary

Cytochromes P450 is a family of heme proteins that metabolize xenobiotics including drugs. Unique human brain cytochrome P450 enzymes metabolize xenobiotics including drugs to active/inactive metabolites through biotransformation pathways that are different from the well-characterized ones in liver. We have identified an alternate spliced functional transcript of CYP2D7 containing partial inclusion of intron 6 in human brain but not in liver or kidney from the same individual. Genotyping revealed the presence of the frame-shift mutation 138delT only in those subjects who expressed the brain variant CYP2D7, which metabolizes codeine exclusively to morphine unlike hepatic CYP2D6 that metabolizes codeine to nor codeine and morphine. CYP1A1 bioactivates polycyclic aromatic hydrocarbons to reactive DNA binding metabolites and initiates carcinogenesis. We have identified a unique splice variant of CYP1A1 having deletion of 87 bp of exon 6 which is present in human brain but not in liver of the same individual. We present evidence for the existence of biotransformation pathways in human brain that are dissimilar from known pathways in liver. Identification and characterization of novel CNS-specific P450 enzymes generated by alternate splicing of known genes or as yet unidentified genes may help predict consequences of exposure to xenobiotics including pesticides in the brain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boyd MR (1980) Biochemical mechanisms in chemical-induced lung injury: roles of metabolic activation. Crit Rev Toxicol 7: 103–176

    PubMed  CAS  Google Scholar 

  • Chinta SJ, Kommaddi RP, Turman CM, Strobel HW, Ravindranath V (2005) Constitutive expression and localization of cytochrome P-450 1A1 in rat and human brain: presence of a splice variant form in human brain. J Neurochem 93: 724–736

    Article  PubMed  CAS  Google Scholar 

  • Elbaz A, Levecque C, Clavel J, Vidal JS, Richard F, Amouyel P, Alperovitch A, Chartier-Harlin MC, Tzourio C (2004) CYP2D6 polymorphism, pesticide exposure, and Parkinson’s disease. Ann Neurol 55: 430–434

    Article  PubMed  CAS  Google Scholar 

  • Gram TE, Okine LR, Gram RA (1986) The metabolism of xenobiotics by certain extrahepatic organs and its relation to toxicity. Ann Rev Pharmacol Toxicol 26: 259–291

    CAS  Google Scholar 

  • McLemore TL, Litterest CC, Coudert BP, Liu MC, Hubbard WC, Adelberg S, Czerwinki M, McMahon JA, Eggleston JC, Boyd MR (1990) Metabolic activation of 4-ipomeanol in human lung, primary pulmonary carcinomas and established human pulmonary carcinoma cell lines. J Natl Can Inst 82: 1420–1426

    CAS  Google Scholar 

  • Ortiz de Montellano P (1986) Cytochrome P-450 — Structure, Mechanism and Biochemistry. Raven Press, New York

    Google Scholar 

  • Pai HV, Upadhya SC, Chinta SJ, Hegde SN, Ravindranath V (2002) Differential metabolism of alprazolam by liver and brain cytochrome (P4503A) to pharmacologically active metabolite. Pharmacogenomics J 2: 243–258

    Article  PubMed  CAS  Google Scholar 

  • Pai HV, Kommaddi RP, Chinta SJ, Mori T, Boyd MR, Ravindranath V (2004) A frameshift mutation and alternate splicing in human brain generate a functional form of the pseudogene cytochrome P4502D7 that demethylates codeine to morphine. J Biol Chem 279: 27383–27389

    Article  PubMed  CAS  Google Scholar 

  • Ravindranath V, Boyd MR (1995) Xenobiotic metabolism in brain. Drug Metabol Rev 27: 419–448

    CAS  Google Scholar 

  • Riedl AG, Watts PM, Jenner P, Marsden CD (1998) P450 enzymes and Parkinson’s disease: the story so far. Mov Disord 13: 212–220

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this paper

Cite this paper

Ravindranath, V., Kommaddi, R.P., Pai, H.V. (2006). Unique cytochromes P450 in human brain: implication in disease pathogenesis. In: Riederer, P., Reichmann, H., Youdim, M.B.H., Gerlach, M. (eds) Parkinson’s Disease and Related Disorders. Journal of Neural Transmission. Supplementa, vol 70. Springer, Vienna . https://doi.org/10.1007/978-3-211-45295-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-45295-0_26

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-28927-3

  • Online ISBN: 978-3-211-45295-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics