Skip to main content
Log in

N-acetyl-S-(2-hydroxyethyl)-L-cysteine as a potential tool in biological monitoring studies?

A critical evaluation of possibilities and limitations

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

In mammalian species, including man, N-acetyl-S-(2-hydroxyethyl)-L-cysteine (2-HEMA) is a common urinary metabolite of a large number of structurally different xenobiotic chemicals. It is a common urinary end product of glutathione pathway metabolism of a variety of chemicals possessing electrophilic properties and, in most cases, also a genotoxic potential. Five different chemically reactive intermediates, with different electrophilic properties, may be involved in the formation of 2-HEMA. An inventory of chemicals known to lead to the formation of 2-HEMA, or based on their chemical structure expected to do so, is presented. Furthermore, an attempt is made to evaluate the possibilities and limitations in terms of the potential use of urinary 2-HEMA as a tool in biomonitoring studies. Two other related, sulfur-containing urinary metabolites, i. e. N-acetyl-(S-carboxymethyl)-L-cysteine and thio-diacetic acid, are proposed as possible alternatives to urinary 2-HEMA. It is suggested that 2-HEMA might be seen as a potentially useful and sensitive signal parameter for the assessment of exposure of animals and man to a variety of electrophilic and therefore potentially toxic xenobiotic chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anders MW, Pohl LR (1985) In: Anders MW (ed). Bioactivation of foreign compounds. Academic Press, Inc., Orlando, Fla., USA, pp 283–315

    Google Scholar 

  • Bernard A, Lauwerys R (1986) Present Status, and trends in biological monitoring of exposure to industrial chemicals. J Occup Med 28: 558–562

    Google Scholar 

  • Bladeren PJ van, Buijs W, Breimer DD, Gen A van der (1980) The synthesis of mercapturic acids and their methyl esters. Eur J Med Chem 15: 495–497

    Google Scholar 

  • Bladeren PJ van, Breimer DD, Huygevoort JATCM van, Vermeulen NPE, Gen A van der (1981a). The metabolic formation of N-acetyl-S-2-hydroxyethyl-L-cysteine from tetradeutero-1,2-dibromoethane: relative importance of oxidation and glutathione conjugation in vivo. Biochem Pharmacol 30: 2499–2505

    Google Scholar 

  • Bladeren PJ van, Breimer DD, Rotteveel-Smijs GMT, Knijff P de, Mohn GR, Meeteren-Wälchli B van, Buijs W, Gen A van der (1981b) The relation between the structure of vicinal dihalogen compounds and their mutagenic activation via conjugation to glutathione. Carcinogenesis 2: 499–505

    Google Scholar 

  • Bladeren PJ van, Delbressine LPT, Hoogeterp JJ, Beaumont AHGM, Breimer DD, Seutter-Berlage F, Gen A van der (1981c) Formation of mercapturic acids from acrylonitrile, crotonitrile, and cinnamonitrile by direct conjugation and via an intermediate oxidation process. Drug Metab Disp 9: 246–249

    Google Scholar 

  • Bolt HM, Filser, S-G, Oesch F, Guenter TM, Friedberg T, Bolt M (1981) Metabolisiering von Vinylchlorid: Unterschiede zwischen Mensch und Versuchstier. In: Schäcke G, Stollenz E (eds) Verr. d. DGAM e.V. 21. Jahrestagung, 13.-16. 5. 1981. Gentner Verlag, Stuttgart.

    Google Scholar 

  • Bolt HM (1984) Metabolism of genotoxic agents; halogenated compounds, In: Monitoring human exposure to carcinogenic and mutagenic agents. IARC Scientific Publications, pp 63–71

  • Bolt HM, Laib RJ, Klein KP (1981) Formation of preneoplastic hepatocellular foci by vinyl fluoride in newborn rats. Arch Toxicol 47: 71–78

    Google Scholar 

  • Bowdon BJ, Wheeler GP, Adamson DJ, Shealy YF (1984) Chemical properties and biological effects of 2-haloethyl sulfonates. Biochem Pharmacol 33: 2951–2956

    Google Scholar 

  • Buijs W, Eid MIA, Onkenhout W, Vermeulen NPE, Gen A van der (1986) The use of sulfenyl halides in the synthesis of mercapturic acids and their esters. Recl Trav Chim Pays-Bas 105: 449–455

    Google Scholar 

  • Buijs W, Meeteren-Wälchi B van, Smidt PC de, Vermeulen NPE, Booister-Schrijnemakers JGM, Gen A van der, Mohn GR (1988) The influence of metabolic activation on the mutagenic activity of α,ω-dihalogenoalkanes in Salmonella Typhimurium TA-100. Mutat Res (in press)

  • Colacci A, Arbellini G, Mazullo M, Prodi G, Grilli S (1985). Res Comm Chem Pathol Pharmacol 49: 243–245

    Google Scholar 

  • Coles B (1985) Effects of modifying structure on electrophilic reactions with biological nucleophiles. Drug Metab Rev 15: 1307–1334

    Google Scholar 

  • Commandeur JNM, Oostendorp RAJ, Schoofs PR, Xu BJ, Vermeulen NPE (1987) Nephrotoxicity and hepatotoxicity of 1,1-difluoro-2,2-dichloroethylene in the rat: Indications for differential mechanisms of bioactivation. Biochem Pharmacol 24: 4229–4237

    Google Scholar 

  • Costa AK, Ivanetich KM (1984) Chlorinated ethylenes: their metabolism and effect on DNA repair in rat hepatocytes. Carcinogenesis 5: 1629–1636

    Google Scholar 

  • Doorn R van, Leydekkers ChM, Bos RP, Brouns RME, Henderson PTh (1981) Detection of human exposure to electrophilic compounds by assay of thioether detoxication products in urine. Ann Occup Hyg 24: 77–92

    Google Scholar 

  • Draminski W, Trojanowska (1981) Chromatographic determination of thiodiglycolic acid: a metabolite of vinyl chloride. Arch Toxicol 48: 289–292

    Google Scholar 

  • Edwards K, Jackson H, Jones AR (1970) Studies with alkylating esters-II: A chemical interpretation through metabolic studies of the antifertility effects of ethylene dimethanesulphonate and ethylene dibromide. Biochem Pharmacol 19: 1783–1789

    Google Scholar 

  • Elfarra AA, Jakobson I, Anders MW (1986) Mechanism of S-(1,2-dichlorovinyl)glutathione-induced nephrotoxicity. Biochem Pharmacol 35: 283–288

    Google Scholar 

  • Farmer PB, Neumann HG, Henschler D (1987) Estimation of exposure of man to substances reacting covalently with macromolecules. Arch Toxicol 60: 251–260

    Google Scholar 

  • Furois-Corbin S, Pullman B (1985) Specificity in carcinogen DNA interaction: a theoretical exploration of the factors involved in the effect of neighboring bases on N-methyl-N-nitrosoureas alkylation of DNA. Chem Biol Interact 54: 9–13

    Google Scholar 

  • Gérin M, Tardif R (1986) Urinary N-acetyl-S-2-hydroxyethyl-Lcysteine in rats as a biological indicator of ethylene oxide exposure. Fund Appl Toxicol 7: 419–423

    Google Scholar 

  • Godeneche D, Moreau MF, Madelmont JC, Duprat J, Plagne R (1982) Disposition and metabolism of 1-(2-chloro-ethyl)-3-(2′,3′,4′-tri-O-acetyl, ribopyranosyl)-1-nitrosourea in rats. Cancer Res 42: 525–529

    Google Scholar 

  • Godeneche D, Madelmont JC, Moreau MF, Duprat J, Chabard JL, Plagne R, Meyniel G (1985) Metabolic disposition of 2-chloroethyl nitrosocarbamoylcystamine in rats. Drug Metab Dispos 13: 220–225

    Google Scholar 

  • Green T, Hathway DE (1977) The chemistry and biogenesis of the S-containing metabolites of vinyl chloride in rats. Chem Biol Interact 17: 137–143

    Google Scholar 

  • Grunow W, Altman HJ (1982) Toxicokinetics of chloroethanol in the rat after single oral administration. Arch Toxicol 49: 275–284

    Google Scholar 

  • Guengerich FP, Mason PS, Scott WT, Fox TR, Watanabe PG (1981) Roles of 2-haloethylene oxides and 2-haloacetaldehydes derived from vinyl bromide and vinyl chloride in irreversible binding to protein and DNA. Cancer Res 41: 4925–4933

    Google Scholar 

  • Haddow A, Ross WCJ (1956) Tumor growth-inhibitory alkyl sulfonates. Nature 177: 995–996

    Google Scholar 

  • Hemminki K, Vainio H (1984), Human exposure to potentially carcinogenic compounds. In: Monitoring human exposure to carcinogenic and mutagenic agents. IARC Scientific Publications, pp 37–45

  • Henschler D (1985) In: Anders MW (ed.) Bioactivation of foreign compounds. Academic Press, Inc., Orlando, Fla., USA, pp 317–347

    Google Scholar 

  • IARC Monographs (1982) Chemicals, industrial processes and industries associated with cancer in humans, suppl. 4. Lyon, France, Vol 1–29

  • Inskeep BP, Koga N, Cmarik JL, Guengerich FP (1986) Covalent binding of 1,2-dihaloalkanes to DNA and stability of the major DNA adduct, S-[2-(N 7-guanyl)ethyl]glutathione. Cancer Res 46: 2839–2844

    Google Scholar 

  • Jones BK, Hathway DE (1978) The biological fate of vinylidene chloride in rats. Chem-Biol Interact 20: 27–41

    Google Scholar 

  • Jones AR, Wells G (1981) The comparative metabolism of 2-bromoethanol and ethylene oxide in the rat. Xenobiotica 11: 763–770

    Google Scholar 

  • Koga N, Inskeep PB, Harris TM, Guengerich FP (1986) S-[2-(N 7-guanyl)ethyl]glutathione, the major DNA adduct formed from 1,2-dibromoethane. Biochemistry 25: 2192–2198

    Google Scholar 

  • Kramer RA, McMenamin MG, Boyd MR (1986) In vivo studies on the relationship between hepatic nitrosourea (MeCCNU). Toxicol Appl Pharmacol 85: 221–230

    Google Scholar 

  • Lewalter J, Korallus U (1986) Erythrocyte protein conjugates as a principle of biological monitoring for pesticides. Toxicol Lett 33: 153–165

    Google Scholar 

  • Liebler DC, Meredith MJ, Guengerich FP (1985) Formation of glutathione conjugates by reactive metabolites of vinylidene chloride in microsomes and isolated hepatocytes. Cancer Res 45: 186–193

    Google Scholar 

  • Lohman PHM, Baan RA, Fichtinger-Schepman AMJ, Muysken-Schoen MA, Lansbergen RJ, Berends F (1985) Molecular dosimetry of genotoxic damage: biochemical and immunochemical methods to detect DNA damage. TIPS Nov FEST Suppl: 5–11

  • Madlo Z, Kubiskova R, Svobodova P, Simova M (1981) Determination of the vinylchloride metabolite S-(2-hydroxyethyl)-N-acetyl-cysteine in urine. Prac Lek 33: 319–323

    Google Scholar 

  • McKenna MJ, Zempel JA, Madrid EO, Braun WH, Gering PJ (1978) Metabolism and pharmacokinetic profile of vinylidene chloride in rats following oral administration. Toxicol Appl Pharmacol 45: 821–835

    Google Scholar 

  • Morgan IR, Holdiness MR, Gillen LE (1983) Semin Oncol 10: 56–61

    Google Scholar 

  • Müller G, Heger M, Norpoth K (1980) Bestimmung der Hydroxyäthyl-Mercaptursäure im Harn Vinylchlorid-Exponierter: Methodische Erfahrungen und analytische Ergebnisse. In: Verhandlungen der Deutschen Gesellschaft für Arbeitsmedizin, 20. Gentner Verlag, Stuttgart, pp 533–536

    Google Scholar 

  • Müller G, Verkoyen C, Soton N, Norpoth K (1987) Urinary excretion of acrylonitrile and its metabolites in rats. Arch Toxicol 60: 464–466

    Google Scholar 

  • Onkenhout W (1985) Gas chromatography and mass spectrometry of mercapturic acids: Applications in biotransformation studies of xenobiotics. PhD thesis, University of Leiden

  • Onkenhout W, Vermeulen NPE, Luijten WCMM, Jong HJ de (1983) Electron impact mass spectrometric analysis of mercapturic acid methyl esters. Fragmentation of mercapturic acids according to “retro-Michael reactions”. Biomed Mass Spectrom 10: 614–619

    Google Scholar 

  • Onkenhout W, Mulder PJJ, Boogaard PJ, Buijs W, Vermeulen NPE (1986) Identification and quantitative determination of mercapturic acids formed from Z- and E-1,3-dichloropropene by the rat, using gas chromatography with three different detection techniques. Arch Toxicol 59: 235–241

    Google Scholar 

  • Osterman-Golkar S, Ehrenberg L (1982) Covalent binding of reactive intermediates to hemoglobin as an approach for determining the metabolic activation of chemicals — ethylene. Drug Metab Rev 13: 647–660

    Google Scholar 

  • Perrard M-H (1985) Mutagenicity and toxicity of chloroethylene oxide and chloroacetaldehyde. Experientia 41: 676–677

    Google Scholar 

  • Peter H, Appel KE, Berg R, Bolt HM (1983) Irreversible binding of acrylonitrile to nucleic acids. Xenobiotica 13: 19–25

    Google Scholar 

  • Shaw IC, Graham McLean AEM (1983) 2-Chloroacetaldehyde, a metabolite of cyclophosphamide in the rat. Xenobiotica 13: 433–437

    Google Scholar 

  • Sittert NJ van, Jong G de (1985) Biomonitoring of exposure to potential mutagens and carcinogens in industrial populations. Fd Chem Toxicol 23: 23–31

    Google Scholar 

  • Storer RD, Conolly RB (1985) An investigation of the role of microsomal oxidative metabolism in the in vivo genotoxicity of 1,2-dichloroethane. Toxicol Appl Pharmacol 77: 36–46

    Google Scholar 

  • Tardif R, Goyal R, Brodeur J, Gérin M (1987) Species differences in the urinary disposition of some metabolites of ethylene oxide. Fund Appl Toxicol 9: 448–453

    Google Scholar 

  • Törnqvist M, Osterman-Golkar S, Kautiainen A, Jensen S, Farmer PB, Ehrenberg L (1986) Tissue doses of ethylene oxide in cigarette smokers determined from adduct levels in hemoglobin. Carcinogenesis 7: 1519–1521

    Google Scholar 

  • Vermeulen NPE, Onkenhout W, Bladeren PJ van (1983) In: Frigerio A. (ed) Chromatography and mass spectrometry in biomedical sciences Vol. 2. Elsevier Scientific Publishing Co., Amsterdam, pp 39–52

    Google Scholar 

  • Vermeulen NPE (1988) Toxicity-related stereoselective biotransformation. In: Gorrod JW, Oelschläger H, Caldwell J (eds) Metabolism of xenobiotics. Taylor and Francis, London, pp 353–369

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vermeulen, N.P.E., de Jong, J., van Bergen, E.J.C. et al. N-acetyl-S-(2-hydroxyethyl)-L-cysteine as a potential tool in biological monitoring studies?. Arch Toxicol 63, 173–184 (1989). https://doi.org/10.1007/BF00316366

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00316366

Key words

Navigation